I. Политика

От Международного полярного года к Международному полярному десятилетию

В.М. Котляков, академик Институт географии РАН

Россия – самая холодная страна в мире. Это связано с северными широтами, в которых расположена российская территория, и близостью «дыхания» Арктики, где в значительной степени формируются атмосферные процессы, определяющие климат нашей страны. Поэтому природные события, происходящие в Арктике, волновали передовые умы России с незапамятных времен.

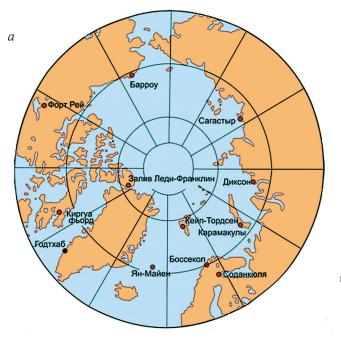
История международных полярных исследований

Интерес человечества к полярным областям Земли, особенно к Арктике, имеет многовековую историю. Достаточно вспомнить поход в XI веке (1032 г.) двинского посадника Улебы к «железным воротам» (пролив между о. Вайгач и Новой Землей) или же основание Мангазеи и плавания в Карском море [1]. Примером же первой крупномасштабной экспедиции в Арктику стала Великая Северная экспедиция (1728—1741 гг.) по наказу Петра Великого, который писал в 1724 г.: «Вспомнил то, чем мыслил давно, и что другие дела предпринять мешали, то есть о дороге через Ледовитое море в Китай и Индию. Не будем ли мы в

исследованиях такого пути счастливее голландцев и англичан» [1]. Результаты экспедиции общеизвестны и на протяжении трех последующих веков были преумножены героическими экспедициями российских и зарубежных исследователей, что в итоге привело к открытию и освоению не только Северного морского пути, но и обширных арктических пространств.

История исследований Антарктики более молода, но, тем не менее, насчитывает около двух веков со времени открытия Антарктиды экспедицией Ф.Ф. Беллинсгаузена и М.П. Лазарева (1820–1821 гг.). Примечательно, что, невзирая на пионерские открытия, совершенные в Арктике и Антарктике российскими и зарубежными экспедициями, мысль о необходимости проведения комплексных исследований полярных областей планеты на основе широкого международного сотрудничества зародилась еще более ста лет назад и была высказана известным австрийским полярным исследователем Карлом Вайпрехтом в 1875 г. в докладе «Основные принципы исследования Арктики», представленном на 48-й Ассамблее физиков и естествоиспытателей [2].

Отмечая важную роль полярных областей в формировании климата планеты, Вайпрехт предложил окружить район Северного полюса кольцом


5

станций, на которых проводились бы наблюдения в течение года с помощью одинаковых приборов и по единым методикам. Спустя четыре года Международный метеорологический конгресс (1879 г.) одобрил проект проведения Первого Международного полярного года (МПГ), состоявшегося в 1882–1883 гг. В нем принимали участие 12 стран, организовавших 12 станций в Северном полушарии и две в Южном, на которых проводились геомагнитные и метеорологические наблюдения, включая наблюдения за полярными сияниями (рис. 1, а). К сожалению, сам К. Вайпрехт за год до начала МПГ скончался от туберкулеза, полученного в его последней арктической экспедиции, и Международный полярный год проводился под руководством Международной полярной комиссии, созданной Международной метеорологической организацией (ММО) и возглавлявшейся вначале Г. фон Неймайером (Германия), а затем Г. Вильде (Россия).

Несмотря на ограниченность числа станций и технических средств, результаты 1-го МПГ подтвердили основную идею, высказанную К. Вайпрехтом, — исследования полярных областей на основе многостороннего международного сотрудничества приносят гораздо более значительные результаты, нежели те, которые могут быть достигнуты в ходе отдельных национальных экспедиций.

Именно поэтому спустя 50 лет, в 1932–1933 гг., состоялся Второй МПГ, вновь организованный Международной метеорологической организацией. Его проведение было осложнено жестокой экономической депрессией, охватившей мир, но тем не менее и по масштабам работ и по полученным результатам Второй МПГ оказался более значительным. В нем принимали участие 44 страны, организовавшие дополнительные метеорологические и геомагнитные станции в Арктике, а также специальные экспедиции с использованием судов и самолетов ($puc. 1, \delta$). Количество станций в Арктике достигло 27, в Антарктике – 7. На них проводились наблюдения по метеорологии, геомагнетизму, земным токам, радиации и содержанию озона. В период Второго МПГ состоялось знаменитое плавание ледокольного парохода «Сибиряков», впервые прошедшего из Мурманска во Владивосток за одну навигацию и открывшего регулярные плавания судов по Северному морскому пути.

Благодаря проведению Второго МПГ была организована система сбора информации о природе Арктики и ее влиянии на соседние регионы. Несмотря на то, что в период Второй мировой войны многие материалы исследований были утеряны, однако те, что сохранились, особенно в области геомагнитных наблюдений, были успешно использованы как в научных

1882-1883

Колледж (Фербенкс)
Барроу

Мыс Челюскина

Мыс Челюскина

Примером о Рудопьфа Тихая

Кейл-хопс-Апванс

Кейл-хопс-Апванс

Кейл-хопс-Апванс

Скорсбилунд

Оиксбу Сторфьорд Ян-Майен

Торгильсбу

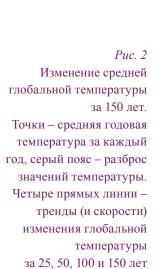
Снаифедльойкудль

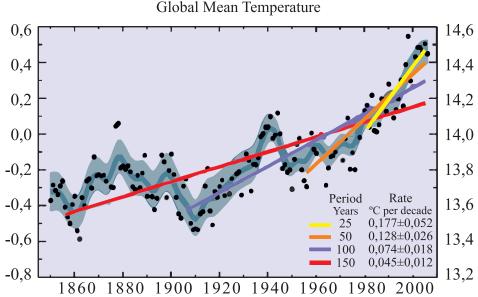
Рейкьявик

1882-1883

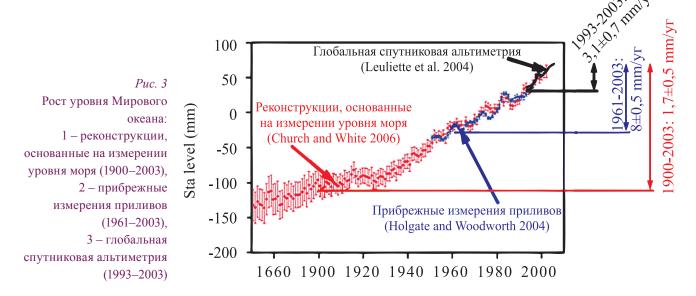
Рис. I Полярные станции в период Первого (a) и Второго (δ) Международных полярных годов

исследованиях, так и при планировании и разработке научных проектов следующего полярного года, предложенного в 1950 г. Однако в ходе обсуждения этой инициативы, она была существенно дополнена предложениями об организации геофизических исследований в низких широтах, что привело к организации в 1957 г., то есть спустя 25 лет после Второго МПГ, Международного геофизического года (МГГ).


МГГ был предложен Международным советом научных союзов (МСНС) и поддержан Всемирной метеорологической организацией (ВМО), преемником ММО с 1950 г. Он проводился в 1957-1958 гг. в период максимума солнечной активности усилиями 67 стран. Это было крупнейшее международное мероприятие в ходе которого были сделаны уникальные научные открытия, создана постоянно действующая сеть для научных и оперативных наблюдений в Антарктиде, проведены морские экспедиции в Южном океане. Перечисление даже основных достижений МГГ заняло бы немало страниц, но в этом нет необходимости, поскольку им посвящены научные монографии и статьи, на их основе разработаны Атласы и справочники. В этой статье хотелось бы вспомнить тех, кто был первопроходцем в этих исследованиях – М.М. Сомова, В.Г. Корта, А.Ф. Трешникова, И.В. Максимова, П.А. Шумского, Е.И. Толстикова, Е.С. Короткевича, А.Г. Дралкина и многих других, посвятивших жизнь изучению полярных областей Земли.


Важно сказать, что в последние годы наша планета переживает эпоху глобального потепления. Эта эпоха началась около 150 лет назад, сменив так называемый «малый ледниковый период», т.е. период похолодания, достигший своего максимума где-то в середине XIX в. (рис. 2). Рост глобальной температуры воздуха в последнее столетие составил чуть больше 0,7°C. Однако за последние 30 лет этот рост усилился,

особенно резко в континентальных районах Евразии и Северной Америки и больше всего – в Арктике.


В тот же период отмечено повышение уровня Мирового океана (*puc. 3*). Реконструкции положения этого уровня в конце XIX — начале XX столетий, а затем береговые измерения и, наконец, глобальная спутниковая альтиметрия свидетельствуют о росте уровня Мирового океана на 1,7 мм в год в XX в., однако в последние десятилетия повышение уровня моря увеличилось и достигло сейчас 3 мм в год. Причины этого подъема уровня, очевидно, связаны с повышением температуры, которое, с одной стороны, ведет к расширению теплеющей поверхностной толщи океана, а с другой — вызывается таянием ледников и связанным с этим увеличением прироста воды в океане.

После МГГ прошло почти 50 лет. Резкие климатические изменения Земли и другие глобальные процессы вновь потребовали концентрации усилий многих стран на арктических исследованиях. В начале 2003 г. Международный совет по науке (новое название МСНС) и Всемирная метеорологическая организация предложили, независимо друг от друга, организовать новый Полярный год. Конечно, все эти годы полярные исследования продолжались и достигли расцвета в 1980-е годы, благодаря разработке крупной программы «Полярный Эксперимент (ПОЛЭКС)» и реализации отечественного проекта «ПОЛЭКС-Север» и международного проекта «ПОЛЭКС-Юг» [3]. Однако в последующие годы в силу экономических и логистических трудностей эти работы сократились. В то же время потребность в исследованиях полярных областей резко возросла. Наблюдающееся в последние годы изменение климата, достаточно резко выраженное в полярных широтах, развитие промышленной инфраструктуры в Арктике, в частности, открытие и разработка нефтегазоносных месторождений арктического шельфа, изменение в

I. Политика 7

силу этих причин социального положения народов Севера, необходимость дальнейшего изучения роли полярных областей в формировании климата планеты требуют интенсивных и крупномасштабных исследований полярных регионов, что, естественно, не под силу одному государству. Именно поэтому мировая научная общественность выдвинула новую международную инициативу, которая к тому же ознаменовала бы 125-летие Первого МПГ, 75-летие Второго МПГ и 50-летие МГГ.

Организация Международного полярного года 2007–2008

еждународный полярный год 2007-2008 (такое официальное название было принято по договоренности между ВМО и МСНС) имеет свою историю. В феврале 2003 г. МСНС организовал группу планирования для изучения возможностей проведения нового МПГ и формулировки его задач. 14-й Всемирный метеорологический конгресс – высший орган ВМО – в мае 2003 г. одобрил инициативу России о проведении МПГ в 2007–2008 гг. и поручил Исполнительному совету ВМО создать механизм для его подготовки и осуществления. В сентябре 2003 г. ВМО и МСНС договорились действовать как спонсоры ВМО и в ноябре 2004 г. создали Объединенный комитет по МПГ, основной задачей которого было руководство и координация подготовки и проведения МПГ. ВМО и МСНС обратились в ноябре 2004 г. к своим странам-членам с просьбой представить заявления о намерении участвовать в МПГ.

Основа тематики МПГ была сформулирована в Рамочном документе, разработанном Группой планирования МПГ, и включала следующие цели [4]: определить современное состояние окружающей среды в

полярных регионах; оценить и понять изменения окружающей среды и состояния народонаселения в полярных регионах в прошлом и будущем и разработать прогноз будущих изменений; улучшить понимание связей и взаимодействия во всех масштабах между полярными регионами и остальной частью планеты и контролирующих их процессов; достичь новых рубежей научных исследований в полярных регионах; использовать уникальное положение полярных регионов и создать обсерватории по изучению процессов, происходящих внутри Земли, на Солнце и в космосе; изучить культурные, исторические и социальные процессы, формирующие устойчивость циркумполярных человеческих сообществ и определить их уникальные вклады в разнообразие общечеловеческой культуры и общества.

Отбором заявлений стран о намерении участвовать в МПГ занимался Объединенный комитет в составе 19 экспертов, включая 14 ведущих специалистов в области полярных наук (в числе которых был и я), а также 5 представителей международных организаций — ВМО, МСНС, Межправительственной океанографической комиссии (МОК), Международного арктического научного комитета (МАНК) и Научного комитета по антарктическим исследованиям (НКАИ).

В марте 2005 г. на своей первой сессии в Париже Объединенный комитет произвел оценку 1200 «Намерений об участии» и окончательно принял к рассмотрению более 450 проектных предложений, из которых в конце концов одобрил 218, в том числе 166 научных проектов и 52 проекта по образованию и распространению знаний в области полярной науки (рис. 4).

В целом научные проекты МПГ 2007–2008 охватывали такие области знаний как геофизика, геология, метеорология, океанология, гляциология, биология, экология и социальные науки. Использовались тех-

нические, логистические и коммуникационные средства, далеко ушедшие от тех, что применялись в МГГ. Искусственные спутники Земли, измеряющие параметры состояния окружающей среды, мощные самолеты, вертолеты, ледоколы, научно-исследовательские суда, автоматические погодные станции, заякоренные и дрейфующие буи — эти технические средства вместе с Интернетом и иерархией компьютеров создают ту уникальную техническую базу исследований, о которой не смели и мечтать ученые периода МГГ.

Таким образом, фундаментальная концепция МПГ 2007—2008 предусматривала скоординированные на международном уровне междисциплинарные научные исследования и наблюдения, сосредоточенные в полярных регионах Земли. Официально период МПГ продолжался с 1 марта 2007 г. до 1 марта 2009 г. Исследованиями были охвачены все оболочки Земли: атмосфера, океан, литосфера, криосфера и биосфера, а также околоземное космическое пространство. В них

приняли участие более 50 тыс. ученых и специалистов более чем из 50 стран (maбn. I).

Исследования в области полярной атмосферы ставили своей задачей изучить влияние глобальных и региональных атмосферных процессов на зарождение, эволюцию и предсказание явлений, имеющих сильное воздействие на погодные условия (например, быстро перемещающихся штормов). В области химии атмосферы, несомненно, важным было проведение измерений и моделирование парниковых газов и аэрозолей с целью уменьшения воздействия химических веществ на полярные экосистемы, а также мониторинг озонового слоя с использованием наземного оборудования, оптического дистанционного зондирования и озоно-зондов, самолетов и спутников.

Исследования полярных океанов были направлены на изучение физических и химических процессов и роли океана в изменении климата. С этой целью

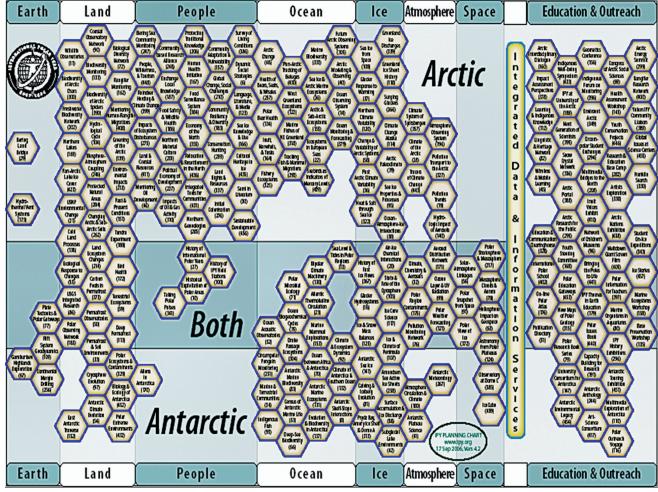


Рис. 4. Научные проекты Международного полярного года 2007–2008 (ячеистая схема, составленная Объединенным комитетом по проведению МГП)

Таблица 1

Страны, принимавшие участие в работах по Международному полярному году 2007–2008*

Австралия	Дания	Марокко	Украина
Австрия	Египет	Мексика	Уругвай
Аргентина	Израиль	Монако	Филиппины
Бельгия	Индия	Монголия	Финляндия
Бермуды	Ирландия	Нидерланды	Франция
Болгария	Исландия	Новая Зеландия	Чехия
Бразилия	Испания	Норвегия	Чили
Великобритания	Италия	Португалия	Швейцария
Венгрия	Казахстан	Республика Корея	Швеция
Венесуэла	Канада	Россия	Эстония
Германия	Китай	Румыния	Южная Африка
Гренландия	Колумбия	США	RинопR
Греция	Малайзия	Турция	

^{*}Синим цветом выделены страны, внесшие основной вклад в работы МПГ; красным – показаны страны, участвовавшие более чем в половине проектов МПГ.

созданы системы наблюдений в Арктическом бассейне и Южном океане, в том числе возрождены существующие и созданы новые станции по измерению среднего уровня моря, расширена сеть дрейфующих буев, размещены заякоренные и плавучие буи, организованы научные станции на дрейфующем льду и проведены морские экспедиции в Арктике и Антарктике. Не меньшее внимание уделено изучению эволюции биологических процессов в арктических и антарктических водах и влиянию изменения климата на состояние морских организмов.

Большое значение имели наблюдения и моделирование гидрологического цикла регионов с холодным климатом и количественная оценка стока поверхностных вод в Арктический бассейн. С помощью наземных сетей наблюдений за вечной мерзлотой, а также за состоянием ледниковых щитов Гренландии и Антарктиды и за динамикой ледников и морского ледяного покрова с использованием спутниковых наблюдений получены уникальные результаты.

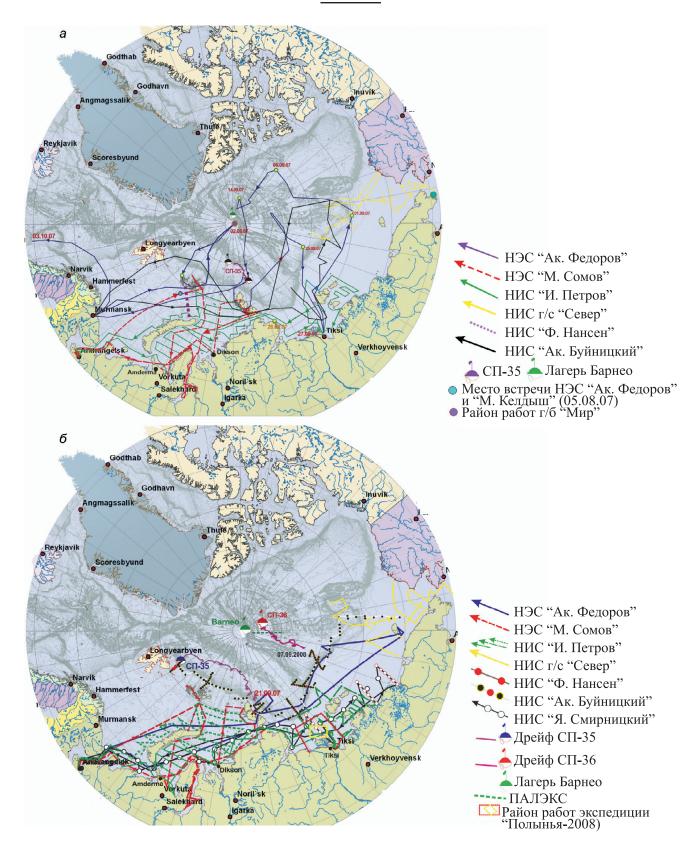
Положение полярных шапок Земли создает уникальные возможности для изучения взаимодействия земного и космического пространств. Изучение полярных сияний, миграции геомагнитных полюсов, проникновения космических лучей и корпускулярных потоков от Солнца в полярную атмосферу составило важную область исследований МПГ.

Отличительная черта МПГ 2007–2008 по сравнению с предыдущими МПГ заключалась в том, что в нем впервые проведены социологические иссле-

дования. Это позволило изучить социальные условия коренного и прибывшего на Север населения на всем циркумполярном арктическом пространстве и влияние на них наблюдающихся в последние годы изменений окружающей среды, происходящих как в результате существенного изменения климата, так и под влиянием интенсивной антропогенной деятельности.

Итоги Международного полярного года 2007–2008

орские и сухопутные экспедиции МПГ про-**Т**водились в обеих полярных областях. В Северном Ледовитом океане работали дрейфующие станции «Северный полюс-35» и «Северный полюс-36» (рис 5), французская яхта «Тара», находившаяся в ледовом дрейфе подобно судну «Фрам» в 1893-1896 гг., российские научно-экспедиционные суда «Академик Федоров» и «Михаил Сомов», научно-исследовательские суда «Виктор Буйницкий», «Академик Мстислав Келдыш», «Фритьоф Нансен», «Иван Петров», «Север», ледокол «Капитан Драницын»; германский научно-исследовательский ледокол «Polarstern», шведский ледокол «Oden», американский «Healy» и канадский «Amundsen», польское научно-исследовательское судно «Oceania», норвежское «Yan Mayen» и др. Российскими исследователями было организовано и проведено в 2007 г. 87 морских и сухопутных экспедиций, в 2008 г. – 72 экспедиции.


Рис. 5
Российская дрейфующая станция в центральной части
Северного Ледовитого океана

На *рис.* 6 показаны маршруты российских морских экспедиций в Арктике.

Большинство экспедиций МПГ носило международный характер. В них принимали участие российские, американские, канадские, норвежские, шведские, германские, французские, польские, китайские, японские ученые. Наряду с традиционными методами исследований широко использовались новые научно-технические разработки, позволившие получить информацию о состоянии атмосферы и океана с высоким пространственно-временным разрешением. С борта НЭС «Академик Федоров» в Северном Ледовитом океане в рамках сотрудничества России с США и Францией было установлено 20 автоматических дрейфующих буев различных классов. В ходе международных экспедиций впервые по всему Арктическому бассейну было размещено 173 заякоренных измерителя течений с продолжительностью измерений до нескольких лет. В приполюсном районе Арктического бассейна Институт океанологии РАН провел гидрофизические измерения в верхнем (0-400 м) слое океана одновременно в четырех разнесенных друг от друга на 20-30 км дрейфующих лагерях. Во всех лагерях было получено 75, а всего в центральной части Северного Ледовитого океана 6500 вертикальных профилей температуры и солености, характеризующих состояние поверхностных и промежуточных водных масс, исследованы крупномасштабные пространственно-временные характеристики галоклина А++рктического бассейна. Выполнялся комплекс наблюдений в рамках эксперимента ПАЛЭКС на временной дрейфующей ледовой базе, работавшей в приполюсном районе Арктического бассейна, включавший водолазные подлёдные работы по сбору планктона, а также комплексные геохимические исследования морского льда и воды, потоков вещества изо льда в воду.

Выполнены комплексные исследования (включая геолого-геофизические работы) в Баренцевом, Карском, Лаптевых и Восточно-Сибирском морях на научно-исследовательском судне «Иван Петров». С борта ледокола «Капитан Драницын» изучена роль процессов трансформации атлантических вод на материковом склоне и примыкающей части океанского ложа в районе морей Лаптевых, Восточно-Сибирского и Баренцева в формировании современных климатических изменений в Арктике. Изучена система полыней и фронтальных разделов в море Лаптевых как

І. Политика

Рис. 6 Маршруты российских морских экспедиций в Арктике в 2007 г. *(а)* и 2008 г. *(б)*

Таблица 2

Изменение оледенение на островах зоссийской Арктики	
за 1952—2001 гг	

Период	1952–1973	1973–1988	1988–2001	
Изменение площади ледников, км ²	-133	-67	-84,2	
Изменение объема ледников, км ³	-70,4	-35,4	-44,5	
Скорость изменения площади, км²/год	-6,3	-4,5	-6,5	
Скорость изменения объема, км ³ /год	-3,4	-2,4	-3,4	

индикаторов состояния и климатической изменчивости природной среды морей сибирского шельфа. Здесь впервые зафиксировано в придонном слое отепляющее влияние атлантических вод, проникающих из северных районов моря Лаптевых.

Совместные проекты российских и норвежских ученых на архипелаге Шпицберген и в его прибрежных водах охватили изучение климатической системы Шпицбергена, припайных льдов во фьордах, долгопериодных изменений уровня, уязвимости районов пастбищного оленеводства в условиях изменений климата. Детально изучались гидротермическое состояние и режим субполярных и теплых ледников, благодаря чему были установлены изменения в геометрии и гидротермической структуре политермических ледников Фритьоф и Ханс.

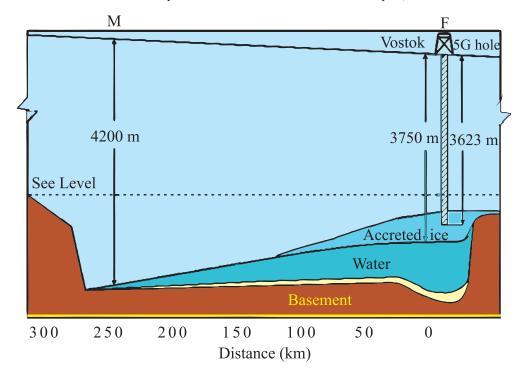
В ходе МПГ проанализировано состояние арктических ледников и их тенденций в последние десятилетия. Анализ данных по балансу массы ледников российской и канадской Арктики, Северной Америки, Шпицбергена, Скандинавии и ледникового покрова Гренландии показывает, что наблюдаемая сейчас убыль льда существенно зависит не только от поверхностного баланса массы ледников (климатическая составляющая), но и от интенсивности стока льда в море (динамическая составляющая). С 1961 по 2005 г. объем льда в ледниках Арктики уменьшился на 66,1 км³, что эквивалентно повышению уровня Мирового океана на 0,18 мм/год. Чистые потери льда в Арктике (без учёта Гренландского ледникового покрова) на 70 % связаны с поверхностной убылью массы (климатические потери), а на 30% – со стоком льда в морские бассейны (динамические потери); на Земле Франца-Иосифа айсберговый сток превышает 50 %. Выявлены эмпирические связи объёма ледников с их площадью и на этой основе вычислены изменения оледенения для трёх архипелагов российской Арктики за 1952-2001 гг. За это время ледники потеряли около 250 км³ -1,6 % от исходной массы. Детальные цифры ледниковых потерь в российской Арктике приведены в maблицаx 2 u 3 [5].

В экспедициях ААНИИ проводились измерения уровня загрязнения снежного покрова в Республике Саха (Якутия) и Чукотском автономном округе, на основе которых сделан вывод, что в восточной части российской Арктики концентрации сажевого аэрозоля в снеге низки и не превосходят средних величин, измеренных четверть века назад за пределами этой территории. Начались работы по бурению мерзлотной скважины глубиной 200 м на берегу оз. Эльгыгытгын с целью выявления уникальных палеоклиматических характеристик Чукотки.

В Антарктике на основе международных трансантарктических походов исследованы районы, которые не освещались наблюдениями более 50 лет, и отобраны ледовые керны неглубокого бурения и пробы снега для лучшего понимания процессов аккумуляции и абляции, а также современной изменчивости поверхностного баланса массы центральной части ледникового щита Антарктиды. Кроме того, проведены исследования аэрозольного и газового обмена между атмосферой и снежным покровом с тем, чтобы лучше понять, каким образом сигналы о региональной и глобальной изменчивости окружающей среды фиксируются в ледовых кернах.

Российские экспедиционные работы в Антарктике включали метеорологические измерения, исследования антарктического ледникового покрова, атмосферной циркуляции, озонового слоя и ультра-

Таблица 3


Изменение оледенения на отдельных арктических архипелагах за 1952–2001 гг.

Показатель	Земля Франца-Иосифа	Северная Земля	Новая Земля	Всего
Площадь ледников в 1952 г., км ²	13 735	18 326	136	32 197
Изменение площади ледников за 1952–2001 гг., км ²	-375	-65	-284	-724
Объем льда в 1952 г., км ³ льда	2144	5406	8243	15 793
Изменение объема льда за 1952–2001 гг., км³ льда м³/год	- 71	-24	-150	-245
Доля айсберговых потерь, %	53	27	19	99

фиолетовой радиации, изменчивости и трендов климатически значимых аэрозольных параметров, взаимодействия вод антарктического склона и шельфа, гляциогеофизические исследования линий тока льда, проходящих через подледниковое озеро Восток, природы подледниковых озер Антарктиды, поверхностной аккумуляции и стока льда, влияния солнечной активности на изменения в атмосфере, а также изучение импульсных сигналов неэлектромагнитной природы и космической погоды в Антарктике. Экосистемные исследования охватывали изучение эволюции и динамики экосистем в Антарктике и Южном океане в

современных климатических условиях. Геологический аспект касался тектоники плит и полярных океанических связей в истории Земли, происхождения, эволюции и положения подледных гор Гамбурцева, изучения неизведанных антарктических территорий. Особое внимание уделено проблемам экологически чистого проникновения и комплексному исследованию подледникового оз. Восток (рис. 7).

Циркумполярные океанографические съемки Южного океана были выполнены в летние сезоны Южного полушария 2007/08 и 2008/09 гг. судами более 10 стран, в том числе России, на согласованных раз-

Puc. 7 Схема глубокой скважины на станции Восток над одноименным подледным озером. Бурение этой скважины было начато в 1970-х годах и приостановлено в 90-х годах для подготовки к проникновению в подледное озеро. Ныне бурение возобновлено с тем, чтобы в ближайшие 1-2 года войти в озеро и начать его непосредственное исследование

Арктика. Экология и экономика № 1, 2011

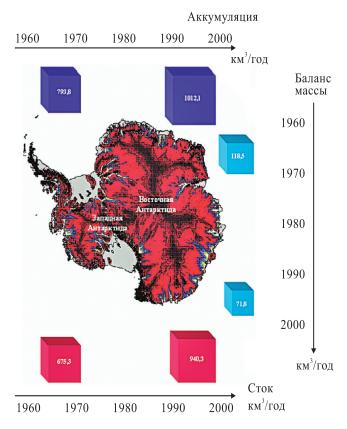


Рис. 8
Аккумуляция, абляция и баланс массы Антарктического ледникового покрова во второй половине XX века

резах для получения квазисиноптической картины распределения физических, химических и биологических характеристик Южного океана и оценки его связи с изменением климата.

В Антарктике с использованием традиционных и космических данных удалось оценить аккумуляцию и сток материкового льда для большей части антарктического ледникового покрова и их изменения в прошлом столетии. Установлено, что ледниковый покров Восточной Антарктиды, как и основные ледосборные бассейны, во второй половине прошлого века имел некоторое превышение снегонакопления над стоком льда и, соответственно, положительный баланс массы (рис. 8). В пределах Западной Антарктиды ситуация иная. По нашим оценкам, в 1960-е годы баланс массы здесь, с учетом погрешностей измерений, был положительным и стал близким к нулевому к концу столетия.

Исследования в области социальных и гуманитарных наук в Арктике включали изучение жизни и благосостояния местных общин, использование местных природных ресурсов, социально-экономическое развитие, документацию народных экологических знаний и сохранение природного, исторического и культурного наследия. В проведении многих проектов в качестве партнеров или лидеров участво-

вали группы и организации коренных народов и местных жителей. Их роль была особенно заметна в исследованиях адаптации местных общин к происходящим быстрым изменениям климата и социально-экономических условий [6].

Проведена оценка современной социальноэкономической ситуации в Арктике и имеющихся материалов по влиянию глобальных изменений климата на жизнь общества. Выделены три крупных блока проблем, имеющих для Арктики и России в целом принципиальное значение:

- проблемы нефтегазового комплекса;
- использование Северного морского пути;
- воздействие изменений климата на образ жизни и здоровье коренного населения.

В первом блоке выделены проблемы освоения месторождений арктического шельфа и прибрежных районов, которые в XXI веке будут определяющими для нефтегазоносного комплекса. Во втором блоке основное внимание уделено состоянию и перспективам развития портовой системы – основы Северного морского пути. В третьем блоке особое место занимают проблемы изменения среды обитания коренного населения как под влиянием климатических изменений, так и вследствие антропогенных воздействий, что ведет к развитию так называемого «модернизационного» стресса. Особое внимание было обращено к п-ову Ямал. На основании проведенного факторного анализа сделан главный вывод: п-ов Ямал не может рассматриваться как рядовая арктическая территория, главная ценность которой заключается только в огромном топливноэнергетическом потенциале. Это территория мирового экологического и социально-культурного наследия, которая должна иметь определенный статус, кодекс правил и норм освоения его ресурсов, чтобы сохранить весь уникальный комплекс на долгосрочную перспективу в целях устойчивого развития региона.

При анализе природопользования в Арктике были выделены особенности, которые сформировали современные предпосылки неустойчивого состояния региона. Удаленным арктическим прибрежным территориям свойственны свои сложившиеся структуры природопользования, расселения и этносоциальные культуры организации жизнедеятельности. В условиях современного развития нефтегазового бизнеса в арктических районах, как правило, сужается территориальная и акваториальная сферы деятельности коренного населения, ухудшается состояние окружающей среды и ограничивается доступ к природным ресурсам - основе традиционного природопользования. Природопользование в Арктической зоне весьма конфликтно и служит областью необходимых согласований, взаимного уважения интересов всех ресурсопользователей и требует работы в общем информационном поле.

Основное внимание было уделено особенностям использования земельных ресурсов в прибрежной зоне, ставших главной проблемой при практическом отсутствии планов территориального развития, слабости законодательных документов и передачи важнейших функций по контролю за землепользованием и охране окружающей среды в компетенцию федеральных органов. Это значительно ослабило позиции местных органов власти, затормозило процессы упорядочения структуры землепользования, а главное – серьезно затронуло интересы местного населения, усилив и без того напряженную социальную обстановку. арктические регионы, как показали исследования, входят в класс особо высокой уязвимости в социальном и экологическом плане и требуют принципиально другой региональной политики, сочетающей в более справедливом соотношении национальные, региональные и муниципальные интересы.

Наряду с впечатляющими научными результатами отмечу несколько важных достижений МПГ: расширение и модернизация метеорологических наблюдательных сетей в Арктике и Антарктике; разработка новых комплексных систем океанографических наблюдений в Северном Ледовитом и Южном океанах; создание базы спутниковых данных и продукции, относящейся к полярным областям, в результате скоординированной деятельности космических агентств; выполнение новых инициатив в изучении гидрологического цикла и криосферы в полярных областях.

На основе этих достижений в настоящее время разрабатывается концепция сохранения наследия МПГ, которая включает развитие многодисциплинарной устойчивой и долговременной системы наблюдений в Арктике (SAON), создание системы наблюдений в Южном океане (SOOS), разработку Глобальной службы криосферы (GCW) и размещение плеяды спутников, освещающих полярные области. Создание этих систем может стать составной частью Международного полярного десятилетия — идеи, широко обсуждаемой в настоящее время.

Международное полярное десятилетие

дной из главных целей этой обширной международной программы станет проведение долговременного мониторинга и исследований резких климатических изменений, обнаруженных в полярных регионах в период МПГ, имеющих влияние как на всю планету, так и на экологию окружающей среды в полярных регионах и жизнь арктических общин.

Результаты МПГ 2007–2008 позволят сохранить национальное наследие – итоги деятельности

различных поколений полярных исследователей для будущего использования; создадут потенциал для развития научных исследований и информационного обеспечения деятельности в полярных регионах; внесут значительный вклад в развитие отечественной и мировой науки; дадут возможность осознать пределы естественной изменчивости климатической системы и оценить тенденции будущих климатических изменений; составят основу для повышения качества прогнозирования состояния окружающей природной среды.

Вместе с тем нужен новый широкий фронт полярных исследований, особенно в связи с серьезными геополитическими интересами многих стран в арктическом регионе и неослабевающим вниманием к Антарктике. Идея Международного полярного десятилетия широко обсуждается в российских научных кругах, особенно в Росгидромете и Российской академии наук. В октябре 2010 г. в Сочи состоялась специальная конференция, посвященная созданию научной программы МГД. Ниже я привожу перечень направлений исследований, предложенных на упомянутой конференции, которые целесообразно включить в национальную программу Международного полярного десятилетия.

Тематические предложения к программе Международного полярного десятилетия

- 1. Приземная атмосфера и климат
- 1.1. Развитие современной системы мониторинга состава атмосферы (парниковых газов, различных типов аэрозоля, летучих органических соединений, озоноразрушающих веществ) в полярных областях, включая измерения O³, NO, NO², CO, CO², SO², CH⁴, NH³, ²²²Rn, углеводородов.
- 1.2. Исследование процессов газообмена в приводном (приземном, приледном) слое атмосферы по данным стационарных прибрежных станций и судовых наблюдений.
- 1.3. Моделирование и параметризация особенностей газообмена в полярных областях для использования в климатических моделях.
- 1.4. Развитие современной системы мониторинга радиационного режима в полярных областях (включая потоки прямой, рассеянной, отраженной и суммарной радиации, альбедо, радиационный баланс).
- 1.5. Регулярные измерения высотных профилей температуры в атмосфере полярных широт вплоть до мезопаузы.
- 1.6. Измерения аэрозольно-оптических характеристик атмосферы (аэрозольная оптическая толщина, влагосодержание атмосферы и др.).

Архипелаг Земля Франца-Иосифа, о. Земля Александры Фото С. Б. Тамбиева

- 1.7. Исследование режимов облачности и ее влияния на радиационный и температурный режимы в полярных областях (радиационно-облачные характеристики по наземным и спутниковым наблюдениям).
- 1.8. Исследование динамики пограничного слоя атмосферы (прежде всего его толщины) над различными поверхностями (полыньи, разводья, всторошенная поверхность, прибрежные зоны) с использованием данных метеорологической башни (обсерватория Тикси), специализированных судовых экспериментов и численного моделирования. Моделирование и параметризация особенностей пограничного слоя атмосферы полярных областей для использования в климатических моделях.
- 1.9. Исследование влияния полыней и разводий на климат окружающих регионов по данным специализированных экспериментов и моделирования.
- 1.10. Глобальные и региональные модели климата: создание модельных блоков и разработка методов их численной реализации; моделирование и параметризация газообмена в полярных областях; связь процессов в полярных регионах с глобальными процессами; вклад естественных и антропогенных факторов в изменения полярного климата; участие в программах по развитию и применению моделей.

2. Последствия

климатических изменений

- 2.1. Ключевые метеопараметры и элементы природной среды, характеризующие стабильность арктического региона и качество климатических проекций для выделенных ключевых элементов.
- 2.2. Критические уровни воздействия на климатическую систему, отвечающие устойчивости природной и социально-экономической среды.
- 2.3. Уязвимость полярных сообществ в условиях наблюдаемого изменения климата (пастбищное оленеводство, среда обитания и т.п.).
- 2.4. Влияние климатических изменений на процессы на водосборах арктических рек (формирование стока, наносов, растворенных веществ) и в зоне вечной мерзлоты.

3. Морская среда и морские льды

- 3.1. Водообмен Арктического бассейна, Северной Атлантики и Северной Пасифики и трансформация водных масс.
 - 3.2. Пресная вода в полярных океанах.
- 3.3. Формирование антарктической промежуточной воды.
- 3.4. Гидрологические и эрозионные процессы на границе «река-море».
- $3.5.\,\Pi$ отоки ${\rm CO}_2$ и метана в системе «атмосфераморской лед—океан».

- 3.6. Нарастание и таяние морского льда; влияние снежного покрова, торосов, снежниц.
- 3.7. Структура и физико-механические свойства морского ледяного покрова.

4. Снежный покров

и наземное оледенение

- 4.1. Сезонный снежный покров Евразии: связь с эволюцией климата и циркуляцией атмосферы.
- 4.2. Изменения режима речного стока и ледовых явлений на реках Северной Евразии в связи с современными колебаниями климата.
- 4.3. Обновление Каталога ледников Северной Евразии и изучение многолетних колебаний баланса массы горных ледников.
- 4.4. Современная эволюция наземного оледенения Арктики и его вклад в колебания уровня Мирового океана.
- 4.5. Образование айсбергов в Арктике и пространственно-временной прогноз их формирования.
- 4.6. Продолжение картографирования подледного рельефа и толщины антарктического ледникового покрова.
- 4.7. Роль антарктических оазисов в эволюции ледникового покрова Антарктиды.
- 4.8. Озеро Восток и его возможная связь с подледной гидрологической сетью Антарктиды.
- 4.9. Проникновение в озеро Восток и изучение физических свойств озера in situ.

5. Вечная мерзлота

и почвы

- 5.1. Расширение мониторинговой сети геокриологических и почвенных стационаров в криолитозоне России, оснащение их оборудованием для измерения основных метеорологических (температура воздуха, осадки, скорость ветра), геокриологических (температура почвы на глубинах, мощность сезонноталого слоя, льдистость/влажность почвы) параметров, а также почвенных и геоботанических характеристик на основных ландшафтах.
- 5.2. Разработка и наполнение единой базы геокриологических данных для криолитозоны шельфа арктических морей; завершение создания атласа цифровых карт криолитозоны шельфа западного сектора российской Арктики.
- 5.3. Изучение температурного режима и особенностей залегания мерзлых и охлажденных пород на мелководье Карского и Печорского морей, его динамики под воздействием современных климатических изменений; увеличение объема геокриологических исследований на шельфе путем совместного использования ресурсов морских полярных экспедиций.
- 5.4. Буровые, геофизические, геодезические и съемочные работы для получения новых знаний о

закономерностях формирования и преобразования криолитозоны, а также для пополнения баз данных в районах с существенными пропусками геокриологической и иной информации.

- 5.4. Динамика криолитозоны в геологическом прошлом (плейстоцен и голоцен) по геоморфологическим данным, ее связь с палеоклиматом.
- 5.6. Современная пространственно-временная изменчивость криолитозоны (глубина распространения, степень сомкнутости и температура многолетнемерзлых пород, мощность сезонноталого слоя) под действием широтно-зональных и региональных ландшафтно-климатических факторов и техногенеза.
- 5.7. Причинная обусловленность современных изменений криолитозоны, роль климатических факторов, биотических изменений, антропогенных и техногенных воздействий.
- 5.8. Устойчивость геосистем криолитозоны и критические уровни воздействия различных антропогенных и климатических факторов.
- 5.9. Динамические многофакторные модели для анализа и прогноза состояния криосферы, их валидация на основе данных наблюдений.

6. Наземные и морские экосистемы

- 6.1. Организация и проведение мониторинга загрязняющих веществ воды, воздуха, почвы и биоты с учетом природных и климатических условий, специфики источников загрязнения и закономерностей функционирования пресноводных систем в полярных условиях.
- 6.2. Географическое распределение и временной ход, включая сезонные изменения, концентрации стойких загрязняющих веществ и их выпадений в российской Арктике.
- 6.3. Моделирование и прогнозирование атмосферного переноса стойких загрязняющих веществ и их выноса в Арктику с учетом данных других стран арктического региона и изменений климата.
- 6.4. Разработка рекомендаций по безопасному проживанию в условиях российской Арктики с учётом естественных изменений климата и антропогенных воздействий на окружающую среду.
- 6.5. Биологическое разнообразие, динамика флоры и растительности, продуктивность арктических и субарктических растительных сообществ, баланс углерода и генофонда полярных экосистем в условиях меняющейся окружающей среды.
- 6.6. Разработка методологии выбора региональных критериев изменчивости абиотического и биотического компонентов состояния водных экосистем, оценки поступления приоритетных загрязняющих веществ в прибрежные зоны морей и антропогенной нагрузки на устьевые области арктических рек.

6.7. Оценка экологического состояния пресноводных экосистем и влияния речного стока растворенных химических веществ на прибрежные зоны арктических морей.

7. Палеоклимат

- 7.1. Эволюция климатов и экосистем Арктики и Субарктики в позднем кайнозое по данным ключевых разрезов Северной Евразии; широтные межрегиональные корреляции ландшафтно-климатических перестроек в постледниковье и голоцене для Севера Евразии и проблема их пространственной асимметрии.
- 7.2. Дендроклиматический анализ событий в сопоставлении с данными других методов; прогнозные сценарии изменения климата и ландшафтов Севера Евразии и Арктического бассейна на основе палеоаналогов.
- 7.3. Колебания климата за последние 100 тыс. лет по данным покровных ледников, морских кернов и спелеотем в высоких широтах. Оценка изменения климата, газового состава атмосферы Земли и природной среды Антарктики в масштабах времени 200, 2 тыс., 40 тыс. и 1,5 млн лет на основе комплексных исследований ледяных кернов с использованием новейших технологий и в тесном сотрудничестве с международным научным сообществом.
- 7.4. Арктические и антарктические озера как показатели изменений климата. Изучение антарктических оазисов, построение палеолимнологических реконструкций их развития.
- 7.5. Использование палеореконструкций климата для определения гидрологических условий в прибрежной Арктике.
- 7.6. Применение независимых статистических методов для выделения колебаний разных временных масштабов.
- 7.7. История взаимодействия человека и окружающей среды в Арктике и Субарктике в позднем плейстоцене и голоцене: продолжение и завершение исследований по созданию Атласа-монографии «Инициальное заселение Арктики человеком в условиях меняющейся природной среды»; развитие геоархеологических исследований опорных памятников палеолита и неолита, отражающих этапы освоения человеком высоких широт.
- 7.8. Оценка адаптации коренного населения Севера к предстоящим изменениям природной среды на основе палеоаналогов.

8. Строение и история геологического строения литосферы

8.1. Изучение строения литосферы и осадочного чехла Арктики и южных районов Индийского

- и Тихого океанов в ходе морских комплексных экспедиций.
- 8.2. Исследование геологической истории формирования континентального шельфа, континентального склона и океанического ложа Арктического бассейна с упором на историю мезозоя и кайнозоя и проблемы современной геодинамики.
- 8.3. Разработка моделей геодинамических процессов в области сочленения и взаимодействия континентальной и океанической литосферы Арктического бассейна и Северной Атлантики.
- 8.4. Геотермическая специфика и тепловая эволюция структурно-тектонических элементов Арктики: определение глубинных температур в осадочном чехле, мощности термической литосферы арктического региона и сравнительный анализ теплового режима осадочных бассейнов.
- 8.5. Сопряженные геологические и биосферные панарктические и глобальные события в мезозое и кайнозое: разработка и уточнение стратиграфических и корреляционных схем для Арктического бассейна и для корреляции событий в Арктике и внеарктических областях.
- 8.6. Высокоразрешающая корреляция разномасштабных природных событий квартера Арктики и изучение их взаимосвязи с изменениями природной среды внеарктических областей.
- 8.7. Литосфера хребта Ломоносова и других тектонических элементов области Центрально-Арктических поднятий: строение, реконструкция истории формирования и оценка возможности их континентальной природы с целью решения проблемы внешней границы континентального шельфа России.
- 8.8. Исследование района озера Восток в Антарктиде как геологического объекта: сейсмические и сейсмогеологические исследования, уточнение строения земной коры на базе использования комплекса геофизических методов и анализа потенциальных полей.

9. Наблюдательная сеть, информационные системы, управление данными

- 9.1. Восстановление и укрепление наблюдательных сетей в полярных районах (метеорологической, гидрологической, морской прибрежной, актинометрической, теплобалансовой, озонометрической, аэрологической, геофизической, радиолокационной).
- 9.2. Выбор наиболее репрезентативных станций, необходимых и достаточных параметров для оценки изменения климата полярных районов Земли, техническое переоснащение измерительных систем, организация дополнительных объектов мониторинга изменений климата.
- 9.3. Разработка требований, стандартов и принципов построения массивов и баз данных на основе

- различных источников данных; создание баз данных по результатам экспедиционных и аналитических исследований в период МПД, а также массивов исторических данных по полярным районам в виде долговременных временных рядов и данных в узлах сетки.
- 9.4. Развитие системы центров данных, созданных в период МПГ, в рамках российской информационной системы для сбора, хранения и обмена информацией по полярным районам.
- 9.5. Интеграция цифровых данных по полярным районам на основе технологий, разработанных и успешно используемых в рамках Единой государственной системы информации об обстановке в Мировом океане (ЕСИМО) и системы центров данных для МПД.
- 9.6. Организация доступа к существующим массивам и базам данных, в том числе к оперативным данным, поступающим по каналам глобальной сети телекоммуникаций, с использованием современных информационных технологий; создание автоматизированных рабочих мест пользователей для повышения эффективности работы с данными МПД.
- 9.7. Подготовка элементов системы поддержки принятия решений для оценки воздействий изменений климата на объекты экономики и население и выработки превентивных рекомендаций для уменьшения или предотвращения негативных воздействий.

10. Общие предложения

- 10.1. Организация и проведение международных школ для молодых полярных исследователей.
- 10.2. Поиск источников финансирования и организация стипендий для молодых полярных исследователей.

Список литературы

- 1. *Магидович И.П., Магидович В.И*. Очерки по истории географических открытий. Т. 3. М., 1984.
- 2. Weyprecht K. Principes fondamentaux de l'exploration arctique. Vienna, 1875.
- 3. *Трешников А.Ф., Саруханян Э.И., Смирнов Н.П.* Исследования по программе Полярного эксперимента. М., 1978.
- 4. A Framework for the International Polar Year 2007-2008. ICSU Planning Group, 2004.
- Котляков В.М., Глазовский А.Ф., Фролов И.Е. Оледенение в Арктике. Причины и следствия глобальных изменений // Вестн. РАН. 2010. Т. 80. № 3. С. 225–234.
- Krupnik I. «The Way We See It Coming»: Building the Legacy of Indigenous Observations in IPY 2007-2008. // Smithsonian at the Poles. Washington D.C.: Smithsonian Institution Scholarly Press, 2009. P. 129–142.