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Аннотация 

В работе представлен обзор различных методов анализа принципиальных компонент и 
применение одного из этих методов к пространственным данным с использованием 
программного пакета “Multigeo”. Анализ принципиальных компонент является одним из самых 
распространенных методов обработки, сжатия и визуализации данных большой размерности, 
хотя эффективность данного метода ограничена его линейностью. Данный подход был 
применен к данным по загрязнению донных отложений Женевского озера и территории Японии 
тяжелыми металлами. 
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PRINCIPAL COMPONENT ANALYSIS OF SPATIAL DATA. Preprint IBRAE-2001-18. 
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Abstract 

This work presents review of various Principal Component Analysis (PCA) methods and 
application PCA for the spatial prediction of concentration of metals using software “Multigeo”. 
Principal component analysis is one of the most popular techniques for processing, compressing and 
visualizing data, although its effectiveness is limited by its global linearity. The technique is illustrated 
using the real data on Geneva Lake sediments contamination and Japanese soil contamination by heavy 
metals.  
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1 Introduction 

High dimensional data analysis is becoming increasingly common. With high dimensional data, it is difficult 
to understand the underlying structure: it is difficult to "see the wood for the trees." Additionally, the storage, 
transmission and processing of high dimensional data place great demands on systems. Hence, it is desirable to 
reduce the dimensionality of the data, whilst maintaining as much of its original structure [4]. 

Since the beginning of last century, several researchers (see, for example, [5, 6, 7, 8]) have developed 
dimensionality reduction techniques. Principal component analysis (PCA) is one of these important techniques. 
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In mathematical terms, n correlated random variables are transformed into a set of nd ≤  uncorrelated 
variables. These uncorrelated variables are linear combinations of the original variables and can be used to 
express the data in a reduced form. Data modeling and pattern recognition are better able to work on this reduced 
form, and the form is efficient for storage and transmission. PCA is also sometimes used as a data visualization 
technique since high dimensional datasets can be reduced to a low dimension and then plotted [4]. 

Thus, Principal Component Analysis is widely used for several different applications, below are some 
examples: 

• Noise reduction 
• Data Compression 
• Visualization oh high dimensional data 

Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and 
visualizing data, although its effectiveness is limited by its global linearity. 

In this paper Principal Component Analysis (PCA) was carried out and obtained results were discussed. Case 
studies are based on the real data on Geneva Lake sediments contamination and Japanese soil contamination by 
heavy metals. 

 

2 Principal Component Analysis review 

The various types of methods have been used for PCA. There are the more conventional matrix methods. In 
these methods all the data are used to calculate the variance-covariance structure and express it in a matrix. Most 
multivariate analysis textbooks (for example, [2, 3, 13, 14, 15 and 16]) describe matrix methods for performing 
PCA. The goal is to find the eigenvectors of the covariance matrix. These eigenvectors correspond to the 
directions of the principal components of the original data, their statistical significance is given by their 
corresponding eigenvalues [4,11]. In recent years, the QR algorithm has been the most widely used algorithm for 
calculating the complete set of eigenvalues of a matrix [17, 18]. Cyclic Jacobi methods are particularly suited for 
implementation in a parallel computer [17, 18]. The divide and conquer method of Cuppen is a relatively new 
method for calculating the complete eigensystem of a symmetric, tridiagonal matrix [17]. The singular value 
decomposition (SVD) of a real, symmetric, positive semidefinite matrix is equivalent to the orthogonal 
decomposition in terms of eigenvalues/eigenvectors [19]. Therefore, algorithms for computing the SVD can also 
be used for PCA. The power method and its variants [20, 21] are some of the simplest techniques for finding a 
few of the dominant eigenvalue/eigenvector [12]. 

PCA's can be also neurally realized (for example, [24, 25, 26, 27, 28, 29]). The PCA network used in [22] is a 
one layer feedforward neural network which is able to extract the principal components of the stream of input 
vectors. Typically, Hebbian type learning rules are used, based on the one unit learning algorithm originally 
proposed by Oja [26]. Many different versions and extensions of this basic algorithm have been proposed during 
the recent years (see [28, 29, 30, 31]). The structure of the PCA NN can be summarized as follows: there is one 
input layer, and one forward layer of neurons totally connected to the inputs; during the learning phase there are 
feedback links among neurons, that classify the network structure as either hierarchical or symmetric. After the 
learning phase the network becomes purely feedforward. The hierarchical case leads to the well known GHA 
algorithm [28, 30]; in the symmetric case we have the Oja's subspace network [26]. PCA neural algorithms can 
be derived from optimization problems, such as variance maximization and representation error minimization. 
We can generalize these problems to nonlinear problems, getting nonlinear algorithms (and relative networks) 
[22]. These have the same structure of the linear ones: either hierarchical or symmetric. These learning 
algorithms can be further classified in: robust PCA algorithms and nonlinear PCA algorithms [29, 30]. We define 
robust PCA so that the objective function grows less than quadratically [22]. The non linear learning function 
appears at selected places only. In nonlinear PCA algorithms all the outputs of the neurons are nonlinear function 
of the responses [22]. 

Principal Component Analysis has found wide applications in various disciplines: psychology [32, 33], 
genetics [34], pattern recognition [35], remote sensing [36] and seismic data analysis [37, 38]. PCA has been 
used for data mining and detecting linear associative rules [39]. Merz and Pazzani [40] have used a PCA-based 
technique for combining regression estimates [22]. A maximum-likelihood-based framework for constructing 
mixture models of PCA is proposed by Tipping and Bishop [41], [22]. 
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3 Theory 

3.1 Principal Component Analysis 
Principal component analysis is the most widely used method of multivariate data analysis owing to the 

simplicity of its algebra and to its straightforward interpretation. 
A linear transformation is defined, which transforms a set of correlated variables into uncorrelated factors. 

These orthogonal factors can be shown to extract successively a maximal part of the total variance of the 
variables. A graphical display can be produced which shows the position of the variables in the plane spanned by 
two factors [2]. 

3.1.1 Transformation into factors 
The basic problem solved by principal component analysis is to transform a set of correlated variables into 

uncorrelated quantities, which could be interpreted in an ideal (multi-Gaussian) context as independent factors 
underlying the phenomenon. That is why the uncorrelated quantities are called factors, although such an 
interpretation is not always perfectly adequate [2]. 

Z is the Nn ×  matrix of data from which the means of the variables have already been subtracted. The 
corresponding NN ×  variance-covariance matrix V then is  

ZZV Τ==
nij
1][σ  

Let Y be an Nn ×  matrix containing in its rows the n samples of factors pY  (p=1,…, N), which are 

uncorrelated and of zero mean. 
The variance-covariance matrix of the factors is diagonal, owing to the fact that the covariances between 

factors are nil by definition 

NNd

d

n
00

00
00

1 11

== ΤYYD  

and the diagonal elements ppd  are the variances of the factors. 

A matrix A is sought, NN ×  orthogonal, which linearly transforms the measured variables into synthetic 
factors 

 h         wit IAAZAY == Τ  
Multiplying this equation from the left by 1/n and ΤY , we have 

ZAYYY ΤΤ =
nn
11

 

and replacing Y by ZA on the right hand side, it follows 

AZZAZAZAZAZA )(11)()(1 ΤΤΤΤΤ ==
nnn

 

Finally 
VAAD Τ=  

that is 
ADVA =  

It can immediately be seen that the matrix Q of orthonormal eigenvectors of V offers a solution to the 
problem and that the eigenvalues pλ  are then simply the variances of the factors pY . Principal component 

analysis is nothing else than a statistical interpretation of the eigenvalue problem 
IQQQΛVQ == Τth          wi  

defining the factors as 
ZQY =  
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3.1.2 Maximization of the variance of a factor 
Another important aspect of principal component analysis is that it allows to define a sequence of orthogonal 

factors, which successively absorb a maximal amount of the variance of the data [2]. 
Take a vector 1y  corresponding to the first factor obtained by transforming the centered data matrix Z with a 

vector 1a  calibrated to unit length 

1h         wit 1111 == ΤaaZay  

The variance of 1y  is 

1111111
11)var( VaaZaZayyy ΤΤΤΤ ===
nn

 

To attribute a maximal part of the variance of the data to 1y , we define an objective function 1φ  with a 

Lagrange parameter 1λ , which multiplies the constraint that the transformation vector 1a  should be of unit norm 

)1( 111111 −−= ΤΤ aaVaa λφ  

Setting the derivative with respect to 1a  to zero 

022            0 111
1

1 =−⇔=
∂
∂ aVa
a

λφ
 

we see that 1λ  is an eigenvalue of the variance-covariance matrix and that 1a  is equal to the eigenvector 1q  
associated with this eigenvalue 

111 qVq λ=  

We are interested in a second vector 2y  orthogonal to the first 

0),cov(),cov( 112121212 ==== ΤΤ aaVaaZaZayy λ  

The function 2φ  to maximize incorporates two constraints: the fact that 2a  should be unit norm and the 

orthogonality between 2a  and 1a . These constraints bring up two new Lagrange multipliers 2λ  and µ  

12222222 )1( aaaaVaa ΤΤΤ (−−= µλφ  

Setting the derivative with respect to 2a  to zero 

022            0 1222
2

2 =(−⇔=
∂
∂ aaVa
a

µλφ
 

What is the value of µ ? Multiplying the equation by Τ
1a  from the left 

 

022
1

11
0

212

0

21 =(− ΤΤΤ aaaaVaa µλ


 

we see that µ  is nil (the constraint is not active) and thus 

222 aVa λ=  

Again 2λ  turns out to be an eigenvalue of the variance-covariance matrix and 2a  is the corresponding 

eigenvector 2q . Continuing in the same way we find the rest of the N eigenvalues and eigenvectors of V as an 
answer to our maximization problem [2]. 

3.1.3 Interpretation of the factor variances 
Numbering the eigenvalues of V from the largest to the lowest, we obtain a sequence of N uncorrelated 

factors, which provide an optimal decomposition (in the least squares sense) of the total variance as 

∑∑
==

==
N

p
p

N

i
ii

11
)(tr λσV  

The eigenvalues indicate the amount of the total variance associated with each factor and the ratio 

)tr( variancetotal
factor  theof variance

V
pλ

=  
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gives a numerical indication, usually expressed in %, of the importance of the factor. 
Generally it is preferable to standardize the variables (subtracting the means and dividing by the standard 

deviations), so that the principal component analysis is performed on the correlation matrix R. In this framework, 
when an eigenvalue is lower than 1, we may consider that the associated factor has less explanatory value than 
any single variable, as its variance is inferior to the unit variance of each variable [2]. 

3.1.4 Correlation of the variables with the factors 

In general it is preferable to work with standardized variables izα
~ to set them on a common scale and make 

them comparable 

ii

ii
i

mz
z

σ
α

α
−

=~  

where im  and iiσ  are the mean and the standard deviation of the variable izα  [2]. 

The variance-covariance matrix associated to standardized data is the correlation matrix 

ZZR ~~1 Τ=
n

 

which can be decomposed using its eigensystem as 

( ) ΤΤΤ === AAΛQΛQQΛQR ~~~~~~~~~  

The vectors ia~ , columns of ΤA~ , are remarkable in the sense that they indicate the correlations between a 

variable iz~  and the factors py  because 

ipipppi aq ~~~),~corr( == λyz  

The vectors ia~  are of unit length and their cross product is equal to the correlation coefficient 

ijji ρ=Τaa ~~  

Owing to their geometry the vectors ia~  can be used to represent the position of the variables on the surface 

of the unit hypersphere centered at the origin. The correlation coefficients ijρ  are the cosines of the angles 

between the vectors referring to two different variables. 
The projection of the position of the variables on the surface of the hypersphere towards a plane defined by a 

pair of axes of factors yields a graphical representation called the circle of correlations. The circle of correlations 
shows the proximity of the variables inside a unit circle and is useful to evaluate the affinities and the 
antagonisms between the variables. Statements can easily be made about variables, which are located near the 
circumference of the unit circle because the proximities in 2-dimensional space then correspond to proximities in 
N-dimensional space. For the variables located near the center of a unit circle it is necessary to check whether the 
proximities really correspond to proximities on the hypersphere by looking at the correlation circles generated by 
other factor pairs [2]. 

In the general case of non-standardized data it is possible to build a graph showing the correlations between 
the set of variables and a pair of factors. The variance-covariance matrix V is multiplied from the left and the 
right with the matrix 1−σD  of the inverses of the standard deviations 

( )ΤΤ
−−−−−− == ΛQDΛQDDQQDVDD 111111 Λ σσσσσσ  

from what the general formula to calculate the correlation between a variable and a factor can be deduced 

ip
ii

p
pi q

σ
λ

=),corr( yz  

3.2 Multivariate Nested Variogram 
The multivariate regionalization of a set of random functions can be represented with a spatial multivariate 

linear model. The associated multivariate nested variogram model is easily fitted to the multivariate data. Several 
coregionalization matrices describing the multivariate correlation structure at different scales of a phenomenon 
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result from the variogram fit. The relation between the coregionalization matrices and the classical variance-
covariance matrix is examined [2]. 

3.2.1 Linear model of coregionalization 

A set of real second-order stationary random functions { }NiZi ,...,1  );( =x  can be decomposed into sets 

{ }SuZ i
u ,...,0  );( =x  of spatially uncorrelated components 

i

S

u

i
ui mZZ (= ∑

=0
)()( xx  

where for all values of the indices i, j, u and v 
[ ]
[ ] 0)(E

)(E

=

=

x
x

i
u

ii

Z
mZ

 

and 
( ) [ ]
( ) vuZZ

CZZZZ
j

v
i
u

u
ij

j
u

i
u

j
u

i
u

≠=(

=(=(

 when               0)(),(cov

)()()(E)(),(cov

hxx

hhxxhxx
 

The cross covariance functions )(hu
ijC  associated with the spatial components are composed of real 

coefficients u
ijb  and are proportional to real correlation functions )(huρ  

∑∑
==

==
S

u
u

u
ij

S

ou

u
ijij bCC

0
)()()( hhh ρ  

which implies that the cross covariance functions are even in this model [2]. 
Coregionalization matrices uB  of order NN ×  can be set up and we have a multivariate nested covariance 

function model 

∑
=

=
S

u
uu

0
)()( hBhC ρ  

with positive semi-definite coregionalization matrices uB . 

Each spatial component )(xi
uZ  can itself be represented as a set of uncorrelated factors )(xp

uY  with 

transformation coefficients i
upa  

∑
=

=
N

p

p
u

i
pu

i
u YaZ

1
)()( xx  

where for all values of the indices i, j, u, v, p and q 
[ ] 0)(E =xp

uY  
and 

( )
( ) qpvuYY

YY
q

v
p

u

u
p

u
p

u

≠≠=(

=(

or      hen             w0)(),(cov

)()(),(cov

hxx
hhxx ρ

 

Combining the spatial with the multivariate decomposition, we obtain the linear model of coregionalization 

∑∑
= =

=
S

u

N

p

p
u

i
pui YaZ

0 1
)()( xx  

In practice first a set of correlation functions )(huρ  (i.e. normalized variograms )(hug ) is selected, taking 

care to keep S reasonably small. Then the coregionalization matrices are fitted using a weighted least squares 
algorithm (described below). The weighting coefficients are chosen by the practitioner so as to provide a 
graphically satisfactory fit which downweights arbitrarily distance classes, which do not comply with the shape 
suggested by the experimental variograms. Finally the coregionalization matrices are decomposed, yielding the 
transformation coefficients i

upa , which specify the linear coregionalization model 
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][   where          i
puuuuu a== Τ AAAB  

The decomposition of the uB  into the product of uA  with its transpose is usually based on the eigenvalue 
decomposition of each coregionalization matrix [2]. 

3.2.2 Bivariate fit of the experimental variograms 
The multivariate nested variogram model associated with a linear model of intrinsically stationary random 

functions is 

∑
=

=
S

u
uu g

0
)()( hBhΓ  

where the )(hug  are normalized variograms and the uB  are positive semi-definite matrices [2]. 
In the case of two variables it is simple to design a procedure for fitting the variogram model to the 

experimental variograms. We start by fitting the two direct variograms using a nested model. At least one 
structure )(hug  should be common to both variograms to obtain a non-trivial coregionalization model. Then we 

are able to fit the sills u
ijb  of the cross variogram, using the sills of the direct variograms to set bounds within 

which the coregionalization model is authorized 
u
jj

u
ii

u
ij bbb ≤  

because the second order principal minors of uB  are positive. 
Constrained weighted least squares routines exist, which allow integrating these constraints into an automated 

fit for a set of predefined structures [2]. 
The extension of this bivariate procedure to more than two variables does not guarantee a priori an authorized 

model, because higher order principal minors of the coregionalization matrices are not constrained to be positive. 

3.2.3The need for an analysis of the coregionalization 
We can use classical principal component analysis to define the values of factors at sample locations and then 

krige the factors over the whole region to make maps. What would be the benefit of a spatial multivariate analysis 
based on the linear model of coregionalization and the corresponding multivariate nested variogram? [2] 

To answer this question we restrict the discussion to a second order stationary context, to make sure that the 
variance-covariance matrix V, on which classical principal component analysis is based, exists from the point of 
view of the model. 

If we let the lag h go to infinity in a second order stationary context with structures )(hug  having unit sills, 

we notice that the multivariate variogram model is equal to the variance-covariance matrix for large h 
∞→→ hVhΓ for           )(  

In this setting the variance-covariance matrix is simply a mixture of coregionalization matrices 

∑
=

=
S

u
u

0
BV  

We realize that when the variables are not intrinsically correlated, it is necessary to analyze separately each 
coregionalization matrix uB . The variance-covariance matrix V is a blend of different correlation structures 
stemming from all scales covered by the sampling grid and is likely to be meaningless. Furthermore, 
coregionalization matrices uB  can be obtained under any type of stationarity hypothesis, while the variance-

covariance matrix V is only meaningful with data fitting into a framework of second-order stationarity [2]. 

3.3 Coregionalization Analysis 
The geostatistical analysis of multivariate spatial data can be subdivided into two steps 

 The analysis of the coregionalization of a set of variables leading to the definition of a linear model of 
coregionalization; 

 The cokriging of specific factors at characteristic scales. 
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These techniques have originally been called factorial kriging analysis (from the French analyse krigeante 
[1]). They allow to isolate and to display sources of variation acting at different spatial scales with a different 
correlation structure [2]. 

3.3.1 Regionalized principal component analysis 
Principal component analysis can be applied to coregionalization matrices, which are the variance-covariance 

matrices describing the correlation structure of a set of variables at characteristic spatial scales [2]. 
Regionalized principal component analysis consists in decomposing each matrix uB  into eigenvalues and 

eigenvectors 

IQQΛQAAAB === ΤΤ
uuuuuuuu     and   ith            w  

The matrices uA  specify the coefficients of the linear model of coregionalization. The transformation 
coefficients 

i
p

p
u

i
pu qa λ=  

are the covariances between the original variables )(xiZ  and the factors )(xp
uY . They can be used to plot the 

position of the variables on correlation circles for each characteristic spatial scale of interest. These plots are 
helpful to compare the correlation structure of the variables at the different spatial scales. 

The correlation circle plots can be used to identify intrinsic correlation: if the plots show the same patters of 
correlation, this means that the eigenvectors of the coregionalization matrices are similar and the matrices only 
differ by their eigenvalues. Thus the matrices uB  are all proportional to a matrix B, the coregionalization matrix 
of the intrinsic correlation model [2]. 

3.3.2 Generalizing the analysis 
The analysis can be generalized by choosing eigenvectors, which are orthogonal with respect to a symmetric 

matrix uM  representing a metric 

IQMQΛMQA == Τ
uuuuuuu  with              

A possibility is to use the metric 

∑
=

=
S

v
vu

0
BΜ  

which is equivalent to the variance-covariance matrix V in a second order stationary model. This metric 
generates a contrast between the global variation and the variation at a specific scale described by a 
coregionalization matrix uB  [2]. 

3.3.3 Cokriging regionalized factors 
The linear model of coregionalization defines factors at particular spatial scales. We wish to estimate a 

regionalized factor from data in a local neighborhood around each estimation location 0x  [2]. 

The estimator of a specific factor )(0

0
xp

uY  at a location 0x  is a weighted average of data from variables in 

the neighborhood with unknown weights i
αω  

∑∑
= =

∗ =
N

i

n

i
i

up

i

ZY
1 1

0 )()(
00

α
ααω xx  

In the framework of local second-order stationarity, in which local means i
lm  for the neighborhood around 

0x  are meaningful, an unbiased estimator is built for the factor (of zero mean, by construction) by using weights 
summing up to zero for each variable 

[ ] 0)()(E
1

0

1

0

000
==− ∑ ∑

= =

∗
N

i

n
ii

l
p

uup mYY


α
αωxx  

The effect of the constraints on the weights is to filter out the local means of the variables )(xiZ . 
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The estimation variance 2
Eσ  is 

( )[ ]
∑∑∑∑∑∑

= == = = =

∗

−−−(=

−=
N

i

n

u
i

pu
i

N

i

N

j

n n

ij
ji

p
uup

aC

YY

1 1
0

1 1 1 1

22
E

)(2)(1      

)()(E

000

0

000

α
αα

α β
βαβα ρωωω

σ

xxxx

xx
 

The minimal estimation variance is realized by the cokriging system 














==

=

=−=−−

∑

∑∑

=

= =

  ... ,1for                                                                       0

 ... ,1                                                                                           

; ... ,1for            )()(

1

0
1 1

000

Ni

n

NiaC

i

j

n
i

u
i

pui

N

j

n

ij
j

β
β

α
β

βαβ

ω

α

ρµω xxxx

 

We find in the right hand side of this system the transformation coefficients i
upa

00
 of the factor of interest. 

These coefficients are multiplied by values of the spatial correlation function )(
0

huρ , which describes the 

correlation at the scale of interest. 
The factor cokriging is used to estimate a regionalized factor at the nodes of a regular grid, which serves to 

draw a map [2]. 

3.3.4 Regionalized multivariate analysis 
Cokriging a factor is more cumbersome and computationally more intensive than kriging it. Coregionalization 

analysis is more lengthy than a traditional analysis, which ignores spatial scale. When is all this effort necessary 
and worthwhile? When can it be avoided? The answer is based on the notion of intrinsic correlation [2]. 

The key question to investigate is whether the correlation between variables is dependent on spatial scale. 
Three ways to test for scale-dependent correlation have been described 

1. codispersion coefficients )(cc hij  can be computed and plotted: if they are not constant for each 

variable pair, the correlation structure of the variable set is affected by spatial scale; 

2. cross variograms between principal components of the variables can be computed: if they are not zero 
for each principal component pair at any lag h, the classical principal components are meaningless 
because the variance-covariance matrix of the variable set is merely a mixture of different variance-
covariance structures at various spatial scales; 

3. plots of correlation circles in a regionalized principal component analysis can be examined: if the 
patterns of association between the variables are not identical for the coregionalization matrices, the 
intrinsic correlation model is not appropriate for this data set. With only few variables it is possible to 
look directly at a table of regionalized correlation coefficients instead of the regionalized principal 
components. 

If the data appears to be intrinsically correlated, we can apply any classical method of multivariate analysis, 
calculate the direct variograms of the factors, krige them on a grid and represent them as maps. But if correlation 
is affected by spatial scale, we need to fit a linear model of coregionalization and to cokrige the factors [2]. 

4 Case studies 

4.1 Data 
The methods described above were applied for the analysis of the spatial data on contamination by heavy 

metals both in Geneva Lake (Leman) sediments and of Japanese soils. 
Leman is situated in the southwest part of Switzerland. Dataset of Leman contains 9 metals (Pb, Cu, Cd, Zn, 

Cr, Ni, Be, B, Mn). Analogously Japanese dataset contains 8 metals (Cu, Zn, Cr, Ni, Be, B, Mn). Leman and 
Japan have the complex monitoring network (almost linear), which complicates analysis. The values of 
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contamination for different metals (both Leman and Japan) are correlated among themselves. The metals are both 
linear correlated with some metals and poorly correlated with other [10]. 

The technique, named Principal Component Analysis (PCA), has allowed to reduce the input dimension of 
data. 

 

4.2 Analysis 
In the given work the Principal Component Analysis was carried out for: 

1. To select the most significant few principal components which will describe all of the real variations 
in the data while the rest of the components will contain mostly uncorrelated noise; 

2. To carry out factorial kriging and factors mapping and using an inversion to initial variables to carry 
out the variables mapping. 

To carry out the Principal Component Analysis (PCA) with the help of Multigeo research software program 
[3], it is necessary: 

1) To ascertain the variables correlation for dataset; 
2) To carry out the spatial correlation analysis of initial dataset (to construct experimental variograms 

and cross-variograms, to select theoretical models [2]); 
3) To carry out the principal component analysis for each model structure; 

The considered variables are correlated and their correlations are presented in Table 1 and 2 for each model 
structure. 

 

Table 1. The correlation matrix for model structures: nugget – above the diagonal, spherical – below the 
diagonal (Japan) 

 Cu Zn Cd Pb Cr Mn Ni As 

Cu 1.0000 0.2805 0.2567 0.4359 0.0224 0.1876 0.0142 0.2608 

Zn 0.6143 1.0000 0.2848 0.326 0.0915 0.2613 0.0571 0.1447 

Cd 0.47 0.3356 1.0000 0.2718 0.0237 0.0648 0.0318 0.0556 

Pb 0.4566 0.1075 0.0378 1.0000 0.0339 0.1953 0.0368 0.5669 

Cr 0.2537 0.2201 0.0651 0.0078 1.0000 0.1383 0.8773 -0.0351 

Mn 0.7086 0.7411 0.6234 -0.0136 0.5815 1.0000 0.0815 0.2321 

Ni 0.1656 0.1799 0.0175 -0.0494 0.9196 0.4871 1.0000 -0.0395 

As 0.4482 0.107 0.4883 0.7774 -0.0355 0.2559 -0.0855 1.0000 
 
 

Table 2. The correlation matrix for model structures: nugget – above the diagonal, spherical – below the 
diagonal (Leman) 

 Cd Zn Cu Mn Cr B Be Pb Ni 

Cd 1.0000 0.4750 0.3397 0.1820 0.2507 0.1611 0.2402 0.3565 0.2516 

Zn 0.8227 1.0000 0.6386 0.1364 0.7091 0.3783 0.6039 0.5209 0.6810 

Cu 0.5025 0.7269 1.0000 0.1098 0.6792 0.2881 0.5496 0.3981 0.6008 

Mn 0.1805 0.2167 0.0236 1.0000 0.1067 0.1417 0.0345 0.1203 0.2151 

Cr 0.3020 0.5647 0.3827 0.3255 1.0000 0.6816 0.6554 0.1840 0.9610 

B 0.2570 0.2562 0.1588 0.2397 -0.0415 1.0000 0.6675 0.1023 0.6740 

Be 0.0505 0.2463 0.0152 0.3333 0.9214 -0.1363 1.0000 0.0055 0.7207 

Pb 0.6416 0.6073 0.3730 0.2175 0.6117 -0.2194 0.4875 1.0000 0.1688 

Ni 0.3361 0.6270 0.4366 0.4229 0.9436 0.1348 0.8360 0.4413 1.0000 
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For Leman dataset both variograms and cross-variograms in all directions and in the direction of 22,5° were 
constructed . Modeled variograms and cross-variograms, obtained for Leman, consist of nugget and spherical 
(with radius 30 km) model structures [10]: 
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where 0c  is nugget, c is sill, a is range. 
The share of accident (noncorrelatedness) in spatial distribution of the data is determined by nugget. 
Theoretical models of variograms and cross-variograms variograms in all directions and in the direction of 

22,5° and also their values are discussed in work [10]. Selection parameters of models were carried out method 
with the help of least square. The models in the direction of 22,5° were used for PCA, because these models 
modeled experimental variograms and cross-variograms better than the models in all directions. The variability 
percentage of the nugget and the spherical model structure for each considered variable is shown in Table 3.  

Table 3. The variability percentage of the nugget and the spherical structure for each variable (Leman) 

Spatial component Variance 
Nugget Spherical 

Cd 43.18 56.82 
Zn 26.67 73.33 
Cu 16.69 83.31 
Mn 16.82 83.18 
Cr 22.18 77.82 
B 15.86 84.14 
Be 17.11 82.89 
Pb 34.68 65.32 
Ni 32.40 67.60 

Similar analysis was carried out for Japanese data: experimental variograms and cross-variograms in all 
directions were constructed. The models (1), consisting the nugget and the spherical (with radius 400 km) model 
structures, have been used for modeling as well as for Leman. Some models are presented in Figure 1. 

 
Figure 1. The some variograms and cross-variograms for Japanese data 

 
The correlations of metals in Japanese data and the variability percentage of model structures are shown in 

Table 1 and 4 respectively. 
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Table 4: The variability percentage of the nugget and the spherical structure for each variable (Japan) 

Spatial component Variance 
Nugget Spherical 

Cu 74.12 25.88 
Zn 54.05 45.95 
Cd 51.34 48.66 
Pb 49.94 50.06 
Cr 48.55 51.45 
Mn 72.38 27.62 
Ni 41.28 58.72 
As 73.38 26.62 

 
These dataset variables (the metals concentrations) are transformed, through the PCA, into a new set of 

orthogonal axes. This set contains 8 components for Leman. For Japanese data another result is obtained: 7 
components for the spherical structure and 8 – for the nugget. Also the ninth new orthogonal axis for Leman 
dataset and the eighth new axis for the spherical structure of Japanese dataset are obtained, but their eigenvalues 
and correlations with the variables are equal zero. Therefore these axes were not examined. 

The correlations of principal components with initial variables for Leman and Japan datasets are presented in 
Table 5, 7 and Table 6, 8 for the nugget and the spherical structures respectively.  

Table 5. Correlations of principal components with initial variables for nugget structure model (Leman) 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Cd 0.4576 -0.557 -0.0588 -0.6723 0.0229 -0.111 -0.1077 0.0229 
Zn 0.8442 -0.2865 0.1471 0.0278 0.0380 -0.0140 0.3899 -0.1708 
Cu 0.7664 -0.2019 0.1966 0.2018 0.3962 0.1656 -0.3213 -0.0692 
Mn 0.2143 -0.241 -0.9243 0.1407 0.1189 0.0805 0.0341 -0.0104 
Cr 0.9162 0.2195 0.0369 0.1244 0.0465 -0.2989 -0.0555 -0.0314 
B 0.7017 0.4072 -0.1726 -0.08962 -0.497 0.08131 -0.1838 -0.129 
Be 0.7944 0.3551 0.0709 -0.1991 0.0638 0.4004 0.1385 0.1209 
Pb 0.3812 -0.7463 0.1555 0.3145 -0.3925 0.0882 -0.0299 0.1087 
Ni 0.9118 0.2399 -0.0858 0.0949 0.0367 -0.2373 0.0441 0.1873 

 

Table 6. Correlations of principal components with initial variables for spherical structure model (Leman) 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Cd 0.6571 -0.6002 -0.1117 0.3028 0.2267 0.1597 -0.1637 -0.0115 
Zn 0.8388 -0.4695 -0.054 -0.0415 0.0058 0.1746 0.2019 -0.0108 
Cu 0.5987 -0.5213 -0.1556 -0.3787 -0.4159 -0.1534 -0.0745 -0.0045 
Mn 0.4228 0.1765 0.6029 0.5303 -0.3812 0.0097 -0.0004 -0.0088 
Cr 0.8941 0.4008 -0.016 -0.1806 0.0477 -0.0289 -0.0066 -0.0628 
B 0.1214 -0.4655 0.7847 -0.1633 0.2993 -0.1908 0.0146 0.0017 
Be 0.694 0.6923 0.0402 -0.0781 0.1701 -0.0365 -0.0322 -0.0097 
Pb 0.7512 -0.0174 -0.434 0.392 0.1056 -0.2802 0.052 0.03 
Ni 0.8899 0.2883 0.1956 -0.248 -0.0225 0.1362 -0.0332 0.0709 

 

Table 7. Correlations of principal components with initial variables for nugget structure model (Japan) 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Cu 0.6526 -0.1788 0.1241 -0.1537 -0.7008 -0.0051 -0.1098 0.0007 
Zn 0.6058 -0.0397 0.3714 0.3645 0.1781 -0.5663 -0.0905 0.0088 
Cd 0.4645 -0.0882 0.6933 -0.169 0.2582 0.4403 -0.0816 -0.0045 
Pb 0.7816 -0.2202 -0.1829 -0.2935 0.1241 -0.0658 0.4486 -0.0061 
Cr 0.2769 0.9248 -0.0497 -0.0674 -0.0008 -0.0068 -0.0214 -0.246 
Mn 0.4867 0.0541 -0.24 0.7535 -0.0503 0.3554 0.0754 0.0151 
Ni 0.2544 0.9246 -0.0417 -0.1381 0.0061 -0.0019 -0.0134 0.2437 
As 0.6025 -0.272 -0.5707 -0.2084 0.2583 0.0376 -0.3546 -0.0003 
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Table 8. Correlations of principal components with initial variables for spherical structure model (Japan) 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Cu 0.8326 -0.2585 0.0643 -0.2567 0.4096 -0.0106 0.0454 
Zn 0.7136 0.0382 0.3968 -0.4891 -0.2969 -0.067 -0.0018 
Cd 0.6284 -0.2678 0.4152 0.573 -0.0041 -0.1742 -0.0477 
Pb 0.3483 -0.657 -0.615 -0.2192 -0.0435 -0.1165 -0.0733 
Cr 0.5784 0.6685 -0.4199 0.0938 0.0109 0.041 -0.1779 
Mn 0.9216 0.2193 0.2622 0.0433 -0.0139 0.1778 -0.004 
Ni 0.499 0.7117 -0.4321 0.1087 -0.0472 -0.1137 0.1757 
As 0.4996 -0.7181 -0.3334 0.2615 -0.1627 0.1516 0.0758 

 
Similarly the eigenvalues of principal components are shown in Table 9 (Leman) and Table 10 (Japan). 

Table 9. The eigenvalue and variability percentage of structures for each factor (Leman) 

PC Eigenvalue Percentile of variance Cumulative percentile 
Nugget Spherical Nugget Spherical Nugget Spherical 

1 4.50 4.32 49.94 48.05 49.94 48.05 
2 1.45 1.82 16.06 20.26 66.01 68.31 
3 0.99 1.25 10.95 13.86 76.96 82.17 
4 0.68 0.80 7.60 8.87 84.57 91.05 
5 0.58 0.50 6.46 5.58 91.03 96.62 
6 0.37 0.22 4.08 2.39 95.10 99.02 
7 0.33 0.08 3.63 0.87 98.74 99.89 
8 0.11 0.01 1.26 0.11 100.00 100.00 

 

Table 10. The eigenvalue and variability percentage of structures for each factor (Japan) 

PC Eigenvalue Percentile of variance Cumulative percentile 
Nugget Spherical Nugget Spherical Nugget Spherical 

1 2.36 3.40 29.51 42.52 29.51 42.52 
2 1.88 2.09 23.46 26.11 52.97 68.62 
3 1.05 1.26 13.19 15.69 66.16 84.31 
4 0.91 0.77 11.32 9.65 77.48 93.97 
5 0.67 0.29 8.43 3.59 85.91 97.55 
6 0.65 0.12 8.08 1.47 93.99 99.03 
7 0.36 0.08 4.50 0.97 98.50 100.00 
8 0.12 0.0 1.50 0.0 100.00 100.00 

 

4.3 Discussion 
After the results of the PCA have been obtained it is possible to reply to the following question: “How many 

parameters are required to adequately describe the metals concentrations?”  
Because of the data compression property of PCA, it is an ideal method for investigating this question. 

Although a physical description of the new axes will not often be immediately apparent, the number of principal 
components that contain most of the information in the metals concentrations tells how many different parameters 
are needed to fully describe the data set [9]. In this case the data are the metals concentrations. Therefore to 
answer this question, it is necessary: 

a) To examine circles of variables correlations in the plane defined by a pair of axes of factors; 
b) To analyze eigenvalues of principal components. 

If to look at Figures 2, 3, 4 and 5 it is possible to see that each of them presents circle of correlations. This is 
the projection of the position of the variables on the surface of the hypersphere towards a plane defined by a pair 
of axes of factors yielding a graphical representation. The circle of correlations shows the proximity of the 
variables inside a unit circle and is useful to evaluate the affinities and the antagonisms between the variables [2]. 
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Figure 2. Circle correlation on the plane of the first two principal components PC1 and PC2 (factors f1, f2) for 

nugget structure (left) and spherical structure (right) (Leman) 

    
Figure 3. Circle correlation on the plane of the first two principal components PC1 and PC3 (factors f1, f3) for 

nugget structure (left) and spherical structure (right) (Leman) 
 

   
Figure 4. Circle correlation on the plane of the first two principal components PC1 and PC2 (factors f1, f2) for 

nugget structure (left) and spherical structure (right) (Japan) 
 

   
Figure 5. Circle correlation on the plane of the first two principal components PC1 and PC3 (factors f1, f3) for 

nugget structure (left) and spherical structure (right) (Japan) 
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These circles of correlations are shown for various principal components and model structures of Leman and 
Japanese datasets. One can see that variables (for Leman dataset – Pb, Be, Ni, Cu, Zn, Cr, Cd; for Japan dataset – 
Cu, Mn, Zn, Cd) begin to group around the axe, defined first factor, at successive substitution of second axe on 
subsequent principal component, thus the strong correlation between the first principal component and initial 
variables is observed. 

Figures 5 and 6 show the eigenvalues for the two different model structures of Leman and Japanese datasets: 
filled circles for the nugget model structure and filled squares for the spherical model structure. Remembering 
that the eigenvalues show the amount of the total sample variance accounted for in that principal component, 
each of these diagrams displays the distribution of variances in the new axes for each of the two structures. 
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Figure 6. The distribution in metal concentration variations contained in each principal component for the 

nugget and the spherical model structures for Leman 
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Figure 7. The distribution in metal concentration variations contained in each principal component for the 

nugget and the spherical model structures for Japan 
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One feature of the diagram for Leman that is clear at a first look is the likeness in the shape of the variances 
distribution in the nugget structure relative to the spherical structure. For Japanese diagram the distinction in the 
shape of the variances distribution is observed. But this distinction is observed at the eigenvalues, which less than 
one, i.e. at the components containing nearly no concentrations information. The first component in the structures 
contains 2.4 to 3.1 times (nugget and spherical, respectively) the variance of the second component for Leman 
data and 1.3 to 1.6 times – for Japanese data. 

The dot-dashed line presents the value of the eigenvalues for a sample of 100% uncorrelated variances and 
can act as a different type of benchmark [9]. Taking the shallow trend of the structures eigenvalues as the 
benchmark of components containing nearly no concentrations information, it follows that, at most, three 
components in the datasets are required to describe most of the metal concentration variation there. 

The Leman data have been used also in the work “Multivariate geostatistical mapping of contamination in 
Geneva lake sediments. Case study with Multigeo” [10]. This work has been drawn the following conclusion: 
three different additional variables of the eight (Zn, Cu, B) are enough to obtain better estimation and estimation 
variation by cokriging. The results of the Principal Component Analysis carried out in the present work confirm 
this conclusion also. 

Other aim of the PCA – factorial kriging and factors mapping in order to carry out the variables mapping 
using an inversion to initial variables. 

For Leman and Japanese data factorial kriging was carried out using Multigeo. Some maps of estimations and 
the variances factors estimations are presented in Figures 8, 9, 10, 11, 12 and 13. 

 

 
Figure 8. The kriging estimations (left) and variations (right) of the principal component PC1 (Leman) 

 

 
Figure 9. The kriging estimations (left) and variations (right) of the principal component PC2 (Leman) 

 

 
Figure 10. The kriging estimations (left) and variations (right) of the principal component PC3 (Leman) 
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Figure 11. The kriging estimations (left) and variations (right) of the principal component PC1 (Japan) 

 

 
Figure 12. The kriging estimations (left) and variations (right) of the principal component PC2 (Japan) 

 

 
Figure 13. The kriging estimations (left) and variations (right) of the principal component PC3 (Japan) 

But there is a series of problems with the research software program Multigeo. Multigeo allows to carry out 
the factorial kriging and mapping factors, however it is impossible to make the inversion to initial variables, i.e. 
one cannot tell which variables describe the greatest part of the real variations in the data. This is the defect of the 
Multigeo for the Principal Component Analysis. 

5 Conclusions 

In the present work the Principal Component Analysis (PCA) has been described and applied for 
geostatistical data. This analysis has been carried out using the data on the contamination of Geneva Lake and 
Japanese soils by heavy metals. The values of contamination for different metals are correlated among 
themselves. According to the results of Principal Component Analysis it is possible to draw the following 
conclusions: 

1. The Principal Component Analysis allows reducing the dimensionality of the data, whilst 
maintaining as much of its original structure. 

2. The three independent parameters are required to account for the metal concentration variations in 
the data on the contamination of Geneva Lake and Japanese soils with metals. 

3. The results obtained in the present work with regard to Leman data confirm other studies on the 
same data well. 

To analyze and visualize raw data and the results Multigeo software was used. 
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