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Проанализирован процесс миграции примесей в гетерогенных средах, состоящих из 
низкопроницаемой матрицы с коэффициентом диффузии d , которая содержит узкие длинные области 
(“трещины”) с высокой диффузионной проницаемостью (коэффициент диффузии dD >> ).  
Рассмотрены одиночные плоская и цилиндрическая трещины, системы из двух и из бесконечного числа 
параллельных трещин и “пересоединение” двух полубесконечных плоских трещин, концы которых 
подходят близко друг к другу. Для одиночной трещины показано, что в интервале времени 

21 ttt <<<<  (где dat 4/2
1 = , a  – характерная толщина трещины, 2

12 )/( dDtt =  для 

плоских и )/ln()/(12 dDdDtt =  для цилиндрических трещин) миграция примесей 

характеризуется субдиффузионным поведением с дисперсией 1~ ttD  в плоском и )/(ln~ 11 ttDt  
в цилиндрическом случае. Сходная ситуация возникает и во всех иных рассмотренных задачах: всегда 
существует интервал времен, при которых система находится в режиме субдиффузии, причем его 
длительность в большинстве случаев растет с dD / , так что, если dD / велико, его верхняя граница 
может оказаться практически недостижима. Показано, что “пересоединения” трещин не оказывают 
влияния на описанную картину смены режимов диффузии. Полученные результаты могут быть 
полезными в разработке методов оценок надежности захоронений радиоактивных отходов в скальных 
породах. 
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REGULAR FRACTURED MEDIA. Preprint IBRAE-2002-03. Moscow: Nuclear Safety 
Insitute RAS, February 2002, 15 p. 

Contaminant transport in regular heterogeneous media consisting of narrow areas (“fractures”) with 
diffusivity D  and a matrix with the diffusivity d  ( D  being much greater than d ) has been analyzed. 
Considered are the following models: single flat and single cylindrical fracture, systems of two and of an infinite 
number of parallel fractures, and an “interconnection” of two semi-infinite flat parallel fractures, coming close to 
each other. For single fractures it has been found that in the time range of 21 ttt <<<<  (where dat 4/2

1 = , 

a  is a characteristic dimension of fracture cross-section, ( ) 1
2

2 / tdDt =  for flat fractures and 

( ) ( ) 12 /ln/ tdDdDt =  for cylinder ones) the contaminant transport is of subdiffusion behaviour with 

dispersion ~ 1ttD  for flat and ~ ( )11 /ln ttDt  for cylindrical fracture; classical diffusion in the time ranges 

1tt <<  and 2tt >>  takes place with effective diffusivities D  and d , respectively. Similar situation also 
arises for all considered fracture systems: there has always been found to exist a time interval (its duration being 
in the majority of cases monotonic with dD / ), within which the system is in a subdiffusion mode. When the 
ratio dD /  is extremely large (e.g., in case of rock fractures), the time 2t  might practically  not be accessible 
resulting in that the regime of anomalous diffusion (subdiffusion) becomes to be asymptotic. Therefore, in 
connection with contaminant transport in fractured rocks, we may deal with the effect of suppression of the 
dispersion in fractures. Fracture “interconnections” are found to be inessential for complex systems diffusion 
time-patterns. The results obtained may be helpful for the development of methods to assess reliability of 
radioactive waste storage in rock massifs.  
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Over the last decades studies of contaminant migration processes in irregular media have experienced the pe-
riod of intensive development (see, for example, [1] and references therein). In many respects, the reason is in 
the fact that, for most of the systems under consideration, time dependences of migrant dispersion prove to be 
anomalous with asymptotic power indexes other than one. Such systems cannot be described by the ordinary 
transport equation with regular and piecewise differentiable coordinate dependence of parameters, in other 
words, they have stochastic or fractal structure. 

This paper is to analyze examples of simple systems, which – within an extremely wide time intervals cover-
ing many orders – reveal anomalous diffusion properties. The system architectures bear the marks of materials, 
which could be actually found in nature (or may be created), in particular, of various fractured rock. 

The simplest model is a single “fracture” filled with a medium having the coefficient of diffusion* D (we 
may name it a “I” medium) and surrounded by an unlimited matrix (the medium “II”) with the coefficient of 
diffusion d  that is 

 

 dD >>  (1) 

 
More complex models assume the presence of two and infinite number of (parallel to each other) fractures 

governed by the inequality (1). It is of importance to consider a system simulating “interconnections” of frac-
tures, i.e. the system where diffusion of two closely running but not contacting fractures occurs through a low 
permeable medium (often such interconnections determine behavior of a whole system, which is below the per-
colation threshold). 

Our analysis will subject all such models. 

1 Single Fracture 

The Problem: Region I is limited in one or two dimensions and corresponds to the plane-parallel layer of 
thickness a  or a straight cylinder (not mandatory circular) with the same diameter value. Region II covers the 
rest of the space. 

At the initial moment of time, contaminant particles are concentrated in the region I , occupying a finite sec-
tion with characteristic dimension a≤ . Our purpose is to find the time dependence of contaminant dispersion 
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 defined by the relation: 
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Here, ( )trn ,  is contaminant concentration depending on spatial coordinates and time, )(2
ttt rrr  ⋅= , 

where tr


 is the projection of the radius vector r  on the boundary plane if area I  corresponds to a plane parallel 

layer (in this case tr


 has dimensionality 2=p ) or on the generatrix if region I is a straight cylinder (then the 

* “Diffusion“ does not necessarily mean “molecular diffusion”. That may also be convection, and in this case the term "dis-
persion" is more frequently used. 
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dimensionality of tr


 is 1=p ). An illustration of the type of media arrangement is presented on Fig. 1. The 
integrals in Eq. (2) are taken over the region I. 

 

 
 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

Fig. 1.  Geometry of the problem. 

 

1.1 Qualitative Analysis 

In the time range 0tt << , where Dat 4/2
0 =  is the time of diffusion in medium I  to a distance of order 

of its lateral dimensions, a , contaminant diffusion takes place within this medium as if it occupies the whole 
space. At the time 0tt >> , contaminant distribution in medium I  becomes uniform along one (for plane paral-
lel layer) or two (for cylinder) dimensions along which the medium is restricted. If additionally, the length of 
diffusion in environmental media is small compared with the lateral dimension of the medium I , i.e. 

    1tt << ,                                                dat 4/2
1 =  (3) 

most of the time contaminant particles spend within the first medium, and we deal with diffusion that is quasi-
two-dimensional at 2=p  or quasi-one-dimensional at 1=p . The contaminant dispersion in this case is given 
by the expression: 

 Dtprt 2~2 >< 

,                                     10 ttt <<<<  (4) 

The situation changes for the time 1tt >> , when a fraction of time τ , which contaminant particles spend in 
medium I , becomes much less unity. The quantity τ  by order of magnitude is determined by the ratio between 
volumes occupied by particles in media I  and II : 
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Contaminant particle dispersion in medium I  is estimated by the expression: 

 ( )∫ ′′><
t

t
t tdtDr

1

~2 τ

 (6) 

Substituting Eq. (5) into Eq. (6), we find the following estimates: 

 2/12 ~ t
d

Dart >< 

                          2=p  (region I  is a plane-parallel layer) (7) 
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                        1=p  (region I  is a straight cylinder) (8) 

The relations of Eq. (7) and (8) are correct under the condition that the dispersion in the medium II ( td~ ) 

remains to be much less the quantity >< 2
tr


. This corresponds to inequality 2tt << , where 

 1

2

2 ~ t
d
Dt 





                                                                         2=p  (9) 

 






d
Dt

d
Dt ln~ 12                                                                  1=p  (10) 

For the time 2tt >> , the dispersion >< 2
tr


 is completely determined by the diffusion law in the medium 

II , and we have 

 dtprt 2~2 >< 

 (11) 

1.2 Problem Solution 

The evolution of contaminant concentration is described by the ordinary diffusion equation that in medium I  
has the form 

 nD
t
n ∆=

∂
∂

 (12) 

and in medium II  is obtained from Eq. (12) by replacement dD → . At times 0tt >> , when dispersion in 

the region I  becomes to be much greater than the cross-section dimension of this region, a , contaminant dis-
tribution over this cross-section is uniform. Then, it is convenient to integrate Eq. (12) over the area of the cross-
section and transform into Fourier representation on the coordinate tr



 and Laplace representation on the time. 
After that, this equation takes the following form 

 ( ) MqNkDs sksk =++ 



2  (13) 

Here, the following notations are used: 
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 SnN sksk
 =  (14) 

 ( ) ( )trnerddtn t
rkist

t
p

sk
t ,

0







 ∫ ∫
∞

−−=  (15) 

skq   is Fourier-Laplace component of contaminant particle flux density, through the boundary between the re-

gions I  and II ; S  is cross section area at 1=p  and aS =  at 2=p ; M  is the total number of contami-
nant particles at initial time moment 

 ( )∫= 0,rnrdM 

 (16) 

In order to make the problem, concerning the medium I , to be closed, it is necessary to express the quantity 

skq   through skN  . For this purpose, we use the diffusion equation in the region II , taking into account the 

continuity conditions for particle concentration and flux density at the boundary of two media. Let examine the 
cases of 2=p  and 1=p  separately. 

A standard solution of diffusion problem in semi-infinite space with a specified flux density at a plane bound-
ary results in the relation: 

 ( ) ( )222 22 kdsd

q

kds

qdn sksk
sk 
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               2=p  (17) 

Combining Eqs. (13), (14) and (17), we find expression for skN  : 
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t
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+++

=                                                   2=p  (18) 

Note that this equality suits to describe contaminant concentration evolution for any time that meets condition 

0tt >> . 

To derive an equation of the Eq. (18) type when the region I  has the form of a straight cylinder ( )1=p , we 

require the fulfillment of stronger inequality: 1tt >> . In the case of an infinitely thin string the relation between 

skn  and skq  is 
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         1=p   (19) 

where νJ  and νK  are Bessel and McDonald functions of the ν -th order respectively. When 1tt >>  
2dks << , and the argument of 0K  for ar ≅  is much less than unity since the scale of any longitudinal non-

uniformity ak >>1 . Therefore we may use the expansion (see, e.g., [2]) 
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 )ln(
2

ln)( 2
0 zzOCzzK +−−=                when 0→z ,   (20) 

where 577.0≅C  is Euler constant: 
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Using the Gauss’ theorem one can easily prove that in our limit (from 1tt >>  it follows that 
nDtn ∆<<∂∂ /  and the theorem is applicable) this “string” solution satisfies uniform diffusion equation and 

the boundary condition for the arbitrary form of the cylinder cross-section. One can also see that the replacement 

of r  on the boundary by its characteristic value 
π
Sa 4= doesn’t affect the formula in the approximation used 

here. Thus, with account of Eq. (14), the solution of Eq. (13), as applied to times 1tt >>  for 1=p , takes the 
form: 
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Let proceed now to derive the contaminant dispersion defined by Eq. (2). Taking into account the homogenei-
ty of concentration distribution over the cross-section of the region I  at 1tt >>  and the formula for inverse 
Fourier-Laplace transformation 

 ( )
( )

( )
( ) skp

p

c

Nrkistkd
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dsMtrN 







 += ∫∫ exp
22
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ππ

 (23) 

(the sign c  at the integral denotes the Mellin contour), we obtain the following relation: 
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 (24) 

Here, summation is over integer values of index α  from 1 to p . Substituting the expressions of Eqs. (18), 

(22) into Eq. (24), we obtain contaminant dispersion at the times 1tt >> : 

 ( )dtttDrt +>=< 1
2 4 π

                                                2=p  (25) 

 dt
t
tDtrt 2ln2
1

1
2 +





>=<                                             1=p  (26) 
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To describe the contaminant dispersion in the whole range 0tt >> , we propose interpolation formulas, 

which coincide asymptotically with Eq. (4) at 10 ttt <<<<  and with Eqs. (25), (26) at 1tt >> : 

 dt
t
tDtrt 41412
1

1
2 +





−+=

π
π

                                           2=p  (27) 

 dt
t
tDtrt 21ln2
1

1
2 +





+=

                                                      1=p  (28) 

Fig. 2 shows schematically dispersion behavior defined by formulas (27) and (28). 

A pattern of diffusion modes can be even more complicated, if the region I  has a form, for example, of a 

straight cylinder with rectangular cross section having such sides a  and b  that dbDa 22 >> . The follow-
ing diffusion regimes will take place in this case: 

1. Ordinary diffusion with diffusivity D  at dbt /2<<  

2. Square root time dependence of dispersion at datdb // 22 <<<<  
3. Logarithmic time dependence of dispersion at 

( )( ) ( )dDdadDtda /ln/// 22 <<<<  

4. Ordinary diffusion with diffusivity d  at ( )( ) ( )dDdadDt /ln// 2>> . 
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Fig. 2 Log-log time dependence of the dispersion at 1=p  (dash line) and at 2=p  (solid line). 
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2 Fracture Systems  

Let us consider the systems consisting of two and of unlimited number of parallel flat fractures of a  thick-
ness, which are separated by a distance ab >> . As before, at an initial point of time the diffusion agent is as-
sumed to be concentrated in one of the fractures† in a small region of order a . The region covered by fractures 
will still be named “Region I” and the dispersion process will be governed by the formula (2). 

At dbtt b 4/2≡<<  the contaminant does not “sense” the neighbouring fractures and diffusion goes in ac-
cordance with the dependencies obtained in the previous part. 

But if btt >> , both problems may be precisely solved by analytical means. In this case the concentration in 
any point of Region II is very easy to express through the flows at boundaries as it is done with the single frac-
ture problem, and the exclusion of unknown values from the system of equations similar to (13) leads to the 
equations 

 constN
t
dkskD

b
ads

j
jsk

b

=










 +
+





 ++ ∑

=

2

1
,

2
22

 (29) 

in case of double fracture problem and 

 constNkD
b
ads

j
jsk =













 ++ ∑

∞

−∞=
,

2  (30) 

in case of unlimited fracture number problem. As a result for two fractures we obtain 

 





 +





 += dtttD

b
adr bt π242  (31) 

and for the unlimited system 

 

 tD
b
adrt 





 += 42  (32) 

A comparison with (25) leads to dependencies, which are qualitatively displayed on Figs. 3 and 4. 
 

† It is easy to prove that such source position is not a loss of generality when we are interested in the migrant behavior within 

time intervals dbtt b 4/2≡>> . In case of time intervals btt <<  fractures do not influence the migrant if a source is set 

a distance from each of them and dispersion is subject to the law dtrt ~2 . 
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Fig. 3a Scheme of log-log dispersion-time dependence for an infinite sequence of flat fractures at 
d
Dab <<  

(with asymptotic behaviour Dt
b
a~ ) and for a set of cylindrical parallel fractures, uniformly distributed in 

space, at 
d
Dab <<  (with asymptotic behaviour Dt

b
a 2

~ 
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1t     

 
 
 
 
 

    

log(t) 

log<r2> 

2t  

 

dtrt ~2

 

 

 

Fig. 3b Scheme of log-log dispersion-time dependence for an infinite sequence of flat fractures at 
d
Dab >>  

and for a set of cylindrical parallel and uniformly distributed in space fractures at 
d
Dab >> . The scheme is 

also relevant to dispersion in a chain-like cylinder fracture system (Fig. 7) when 
d
Dab >> . 
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Fig. 4 Scheme of log-log dispersion-time dependence for two parallel flat fractures and for two parallel cylin-

drical fractures in case 
d
Dab >> (in the opposite case 2t  must be replaced by 

d
D

b
a

d
a

d
D ln

2

). 

 

As we see, solutions to the problems under question differ from that of the single fracture problem only in 
orders of typical time intervals and efficient coefficients of diffusion, but not in the appearance of time depend-
encies. In our view this is the evidence of non-sensitivity of the structure of diffusion behavior tending to a more 
complex fracture structure in the matrix. Another situation, however, could arise either in case of linkage type 
change (topology) in the highly permeable medium or in case of situations adjacent to these bifurcations where 
there are relatively narrow approaches (gaps) between unlinked fractures. Let us verify this possibility. 

The simplest model containing such gaps is the problem of the instant source diffusion where the source con-
tains M  number of particles and located in point cx −= , and diffusion is to the medium shown in Fig. 5. Our 
interest is how the diffusion agent will be proliferating in Region 3, i.e. in the fracture, which is not contacting 
with the one containing the source (Region 1). 

  

b  
a  3  

2  

1 

y  

cx −=
 

 

Fig. 5 Scheme of an interconnection of fractures 
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Firstly, assume that ab << . In this case, for the time intervals of order bt , we may neglect the diffusion 
agent egress from a band with width a , the equations being considered one-dimensional. Matching of their solu-
tions at 0=x  and bx =  produces 
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where 1N  and 3N  are N in Regions 1 and 3, respectively. 

We see that at btt << , i.e. 1>>
D
sb , in Region 1 a normal diffusion in a semi-infinite segment with the 

zero flux boundary condition takes place, and in Region 3 concentration remains equal to zero. In the otherwise 
limiting case btt >>  (34) is simplified: 
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and we obtain 
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(see [3], p. 518). 

It may be proven that the law of dispersion corresponding to (36) will never differ from the classical one. It is 

seen, however, that 3N  starts change substantially (as DtM /  does) only at time intervals 
d

b
d
Dt

4

2

>>  

(if, of course, 
D
dab <<  and (36) remains true). We have to find out physical nature of this condition. It 

means that a flux involving a usual diffusion spreading and carrying particles from Region 0≅x  surpasses the 
flux through the “hard” Region 2. Actually, the first flux 1F , in terms of order of magnitude, is 

( )DtN
t

∆
∂
∂

, and the second one 
b
NdF ∆=2  (herein is 31 NNN −≡∆ ); 21 FF >>  actually means 
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d
b

d
Dt

4

2

>> . Having these time intervals the gap does not influence diffusion at all. (One has to be reminded 

that 
d

at
4

2

<<  should be true.) 

Let us now proceed to the case ba << . Here the precise expres-
sions are more difficult to obtain. However the resolved problems 
will be useful to carry out a meaningful qualitative analysis. 

When btt <<  Regions 1 and 3 are in no way interactive and the 
problem is similar to the one considered in the first part, which deals 
with two mutually mirror-like sources in points cx ±=  (they en-
sure the zero flux condition at 0=x ). That means that we will have 

Dtrt ~2  at 
d

at
D

a
44

22

<<<<  and dtttDrt +1
2 ~ π

 at 

d
bt

d
a

44

22

<<<< .  

Consider the case btt >> . It should be noted that if 2ttb >> , i.e. 
d
Dab >> , dispersion starts already by 

the time bt  according to the law dt4 : the diffusion agent had departed the fracture and is so far away that it 
does not “sense” neither it nor its neighbour, and the second fracture, which is too remote from the first one, 
misses the game. Otherwise ( 21 ttt b <<<< ), the contaminant approaches the second fracture by the time 
when the first fracture is in the subdiffusion mode and nearly all particles are in medium 2 to form a “blanket” of 

size adt >> . Therefore, the transfer through the part of Region 2, which meets the condition 2/ay < , is 

dta /  times less efficient than through the remaining part of the Re-
gion, i.e. at btt >>  the exchange takes place mainly between the “blan-

kets”, the time of this exchange ( bt ) being much less than the diffusion 

time along the system “fracture – blanket”. In other words, at btt >>  a 
common “blanket” is formed at Regions 1 and 3 to ensure such efficient 
exchange that the system behaves as the one considered in the first part of 
this paper. 

 So, if 21 ttt b <<<< , both intervals- bttt <<<<1  and 2tttb <<<<  feature subdiffusion; if, other-

wise, 2ttb >> , again at 21 ttt <<<<  subdiffusion takes place. 

 

The last system we examine deals with cylindrical fractures, parallel and 
distanced by b from each other, as before. This model completes the symmetry 
between the first and the second part of the paper. 

At first, let there be two fractures (a cross-section of them is depicted on 
Fig. 6). We could see that for btt >>  fractures are “unified”, an efficient size 

being b  and efficient diffusion coefficient being an average over this b -size 

region (i.e. about D
b
ad

22





+  in our case). So, as soon as for btt >>  the 

dispersion (perpendicular to the list plane) obeys (28), we meet two different 
situations: if 2ttb >> , conventional diffusion ( dt~ ) begins at 2t and con-

 

 

b  
a2  

Fig. 6 Two cylindrical fractures 

 

b  

 

 

Fig. 7 A chain of cylindrical frac-
tures 

Fig. 8 Uniformly distributed  
cylindrical fractures 
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tinues after bt  (Fig.4); if 2ttb << , after bt  subdiffusion goes on, transforming into conventional mode at 

d
D

b
a

d
Dt ln1 .  

Next, consider infinite sets of cylindrical fractures. In contrast to what we had above, here we can occupy by 
them either the whole space (Fig. 8) or only its subset (such as a narrow band depicted on Fig. 7). If the first pos-
sibility is realized, then to the moment bt  a conventional diffusion begins with the coefficient about 

D
b
ad

22





+  and, depending on the relation between bt  and 2t , we have the situations shown on Figs. 3. 

Of the opposite cases we view only the one when the fractures are set to form a chain of negligible curvature 
(Fig. 7). If 2ttb << , at btt >>  this chain behaves as a continuous plane (as the common blanket for all cyl-
inders is formed), and a logarithmic plateau transforms into a square-root dispersion-time dependence, which 

retains till 1

2

t
d
D








, i.e. till “ 2t  for plane”. This intricate behaviour is sketched on Fig. 9. The case 2ttb >>  

refers us to Fig. 3b. 

 

 

1t  
 

  

 
 
 
 
 

    

log(t) 

log<r2> 

2

1 






d
Dt

 

  

dtrt ~2

 
 

bt  

 

Fig. 9 Scheme of log-log dispersion-time dependence for a chain-like cylinder fracture system (Fig. 7) when 

d
Dab << . 

Conclusion. 

By considering different examples we have got an evidence that in case of diffusion in the systems of “frac-
tures” surrounded by a low permeable medium there is always a range of time intervals where dispersion grows 
slower with time than as per the linear law, however, surpassing dispersion in the hardly permeable medium. It 
should be especially stressed that at high dD /  the upper boundary of the range may appear to be virtually in-
accessible, and in this case, likewise irregular media, an off-normal mode would be viewed as asymptotic one. 

An important conclusion that may be drawn from the work results is a low sensitiveness of diffusion mode 
change scheme to a complication of the fracture structure within the matrix. Moreover, the results are the evi-
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dence of the fact that the “interconnections” (regions where fractures are close to each other) are nearly irrele-
vant for the diffusion patterns. It is also worthwhile to note that for all considered fracture systems if the cease-
time of subdiffusion 2t  exceeds the time of the diffusion through space between fractures bt , the fractures be-

have collectively at btt >> . In the opposite case fractures act independently. 

The problems resolved are of special interest in terms of radioactive waste disposal. Experimental studies of 
“tails” spreading from storage facilities differ by orders from theoretical assessments based on regular diffusion 
asymptotic forms. Fractured rock is the typical location of such storage facilities. Therefore, the studies of a par-
ticle diffusion behavior is important to understand processes leading to the above difference and to develop 
methods to evaluate reliability of disposal sites. The obtained results may be useful for these purposes. 
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