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Аннотация 

Предложено обобщение модели транспорта примесей в сильно неупорядоченных 
средах, обладающих фрактальными свойствами, с учетом супердиффузионного 
поведения на больших расстояниях и флуктуационного – на малых расстояниях. 
Установлено, что пространственные флуктуации характеристик среды приводят к 
перенормировке мощности источника примесей. Коэффициент перенормировки, K , 
значительно убывает с размером источника R  при значениях R  меньше 
корреляционной длины, определяемой свойствами среды. В этой же области R  
коэффициент K , а с ним и эффективная мощность, испытывают возрастающий 
статистический разброс. 
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Abstract 

An extension of the model for an impurity transport in highly disordered media with fractal properties is 
proposed taking into account super-diffusion (at large distances) and fluctuation (at short distances) behavior. It 
is determined that spatial fluctuations of medium characteristics lead to renormalization of the power of an 
impurity source. Renormalization factor K  considerably decreases with source size R  if the latter is less than a 
correlation length determined by medium properties. In this range of R  the factor K  as well as an effective 
power of the source experience an increasing statistic scattering.  
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Impurity particle migration in highly disordered media with fractal properties is used to be analyzed basing 
on generalized transport equation which results in anomalous diffusion [1,2]. Such description is of averaged 
nature. However, it is obvious that local characteristics of fractal medium are highly fluctuating. The question 
arises: how do these fluctuations affect transport processes and how can relevant effects be taken into account? 
This paper is to analyze the impact of fluctuations on impurity transport processes depending on an impurity 
source size. 

A generalized scheme of an averaged description of the impurity transport in statistically homogeneous 
media in three-dimension case can be formulated as a continuity equation: 
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Herein, the flux density vector ( )trqq ,ρρρ
=  and the particle concentration ( )trc ,ρ  depending on coordinates and 

time are connected with an integral relation: 
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 being determined by medium characteristics has the property: 
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, Eq. (1) is reduced to the classic 

diffusion equation resulting in that the migration length at a long time interval behaves as ( ) 2/1ttr ∝ and the 

concentration at long distances drops due to Gauss law. If the decrease of the function ( )rfi
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Here, ( )nd ρ
~1 if 1=n

ρ
 and V and L  are medium characteristics having dimension of speed and length 

respectively. Substitution of Eq. (4) into Eq. (2) and then into Eq. (1) results in a generalized transport equation 
applicable for averaged description of impurity transfer if spatial scale of a variation in concentration exceeds a 
correlation length L , i.e. ccL <<∇ . In this case, transport processes are of super-diffusion nature with a 

migration length varying as ( ) ( ) ( )α−2/1/~ LtVLtr . An alternative statement of this problem consists in the 
formalism of fractional derivatives. In this formulation, the impurity transport equation differs from the classic 
one by replacement of the spatial second-order derivatives by ( )α−2 - order derivatives. It should be stressed 

that both formulations deal with averaged description of the processes at Lr >>
ρ

 scales. 

Consider the problem when the size of an impurity source R  is of the order or less than the correlation 
length L , and suppose that the time counted from the beginning of source action satisfies the inequality: 

( )VLt />> . Let us surround the source by an imaginary surface 1S  with characteristic radius LR >1 . 
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The shape of this surface will be choused from the condition that the impurity concentration at the surface is to 
be constant for the point source located at the origin of coordinates being the center of the real source. A total 
impurity flux Q  from the source under consideration to the surface 1S  can be represent in the form: 

 ( )10 ccAQ −=  (5) 

Here 0c  and 1c  are the meanings of the impurity concentration at the source boundary surface S  and at the 

surface 1S , respectively; the quantity A  is determined by the medium properties in the space between the 

surfaces S  and 1S  (in the near zone). The flux Q  being continuous when crossing the surface 1S  is expressed 

through the medium characteristics outside the surface 1S  (in the far zone) where the generalized transport 
equation holds, and we have: 

 1cBQ =  (6) 

Excluding the concentration 1c  from Eqs. (5) and (6) we arrive to the relations: 

 0QKQ = ,       00 cBQ = ,       ( ) 1−+= BAAK  (7) 

Under a given concentration at the source surface, the quantity 0Q  corresponds to the source power derived 

neglecting the fluctuations of medium characteristics, and the quantity Q  is the effective source power 
renormalized by fluctuations, K  is a power renormalization factor. 

The coefficient B  can be calculated by standard method based on Eqs. (1), (2) and (4). By the order of 
magnitude, it equals: 
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At distances Lr >>
ρ

 the averaged concentration is expressed through the effective power Q  regardless the 
source size. In particular, the Eq. (1) and the relations of Eqs. (2) and (4) result in the following expression for a 
far tail of the concentration distribution: 
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The coefficient A  cannot be deduced from the averaged transfer equation since it depends on distribution 
details of medium characteristics in the near zone where they are subject to strong fluctuations. This situation 
reminds the problem associated with tunnel barrier conductivity having been studied by Raikh and Ruzin [3]. So 
we shall use the approach developed in Ref. [3]. In our case, the transfer coefficient A , similarly to conductivity 
in Ref. [3], is determined by sparse favorable configurations, named as “punctures” (e.g., fractures in the case of 
impurity transport in rock massifs). The contribution F  into the transfer coefficient A  coming from a specific 
puncture is statistically distributed in a broad interval of magnitudes and may be represented by the expression 

( )uFF −= exp0  where u is auxiliary variable taking meanings between 0  and ∞ . The puncture density 

referred to the unit area of the source boundary surface S , as in Ref. [3], can be determined as:  

 ( ) ( ) ( )[ ]uSu Ω−= − exp1
0ρ  (10) 
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where 2/1
0S  is a characteristic cross size of a puncture being negligible in comparison to the average distance 

between them, ( )uΩ  is a function with the properties: ( ) 1>>Ω u , 0<
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, 02
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average value of the transfer coefficient A  takes the form: 
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The integrand in Eq. (11) possesses a sharp peak. Thus, we have up to a pre-exponential factor: 
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where a  is a specific value of transfer coefficient which does not depend on source boundary surface area, 
( )optopt uΩ=Ω . The value optuu =  corresponding to optimal punctures is determined by the relation: 
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. The applicability condition for the result expressed by Eq. (12) consists in that the 

average quantity of optimal punctures at the source surface area should be large, ( ) 1>>ρ optuS , or: 

 *SS > ,            ( )optSS Ω= exp0*  (13) 

In the case *SS < , when the average number of optimal punctures is less than unity, the averaged transfer 

coefficient is determined by integral from Eq. (11) in which the lower limit has the meaning fuu =  

corresponding to the punctures whose averaged number is of the order of unity, ( ) 1=fuS ρ . Then up to a 
pre-exponential factor we have: 

 ( )[ ]topf uuaSA −−>=< exp*                           *SS <  (14) 

The quantity fu , according to its definition and with account of Eqs. (10) and (13), satisfies the equation: 

 ( )[ ] 1exp
*

=Ω−Ω fopt u
S
S

 (15) 

It should be noted that for large size sources (when *SS > ) the quantity >< A  decreases with decreasing 

of the surface area S  proportionally to S  itself, however if we deal with small sizes (when *SS < ) it 
decreases faster (according to Eqs. (14), (15)). 

One more effect caused by fluctuations of disordered medium properties is an increase in statistic scattering 
of the transfer coefficient A , taking place when the source size decreases. Calculations similar to that ones done 
for tunnel barrier conductivity in Ref. [3] lead to the conclusion that the relative scattering 

( ) ( ) ><>><−=<Δ AAAA /2/12  is small when *SS > , it is compared to unity when *SS < ; and 

may exceed unity in the case *SS << . 
Taking into account the results for transfer coefficient A , the assessment of Eq. (10) and the relations of Eq. 

(9) we arrive to the conclusion that the power renormalization factor tends to unity when the source size is large 
( 1≅K  if *SS >> ). For small meanings of the source size, the averaged value of the factor K  is determined 
by the expression: 
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The behavior of the averaged renormalization factor ( ) >≡< KM ν  on the dimensionless source size variable 
ν  defined as  

 
( )

opt

SS
Ω

+= ∗/ln
1ν  (17) 

is shown schematically in Fig. 1. 
When the source surface area decreases ( *SS < ) the statistical scattering of the renormalization factor 

( ( )KΔ ) grows up similar to the transfer coefficient A . It is obvious that the characteristic surface area *S  

separating two different impurity transfer regimes ( *SS >  when fluctuations are negligible and *SS <  when 
fluctuations play a significant role) has 

the order of 2L . 

Thus, spatial fluctuations of medium 
characteristics result in significant 
reduction of the ensemble average 
effective power for the small size 
impurity source. In this case the effective 
power is subjected to a significant 
statistical scattering. 
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Fig. 1. Behavior of the averaged renormalization factor 
( ) >≡< KM ν  on the dimensionless source size 

variable ν  defined by Eq. (17).


