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AHHOTAMA

[IpenyiosxkeHo 00001IEHNE MOJAETM TpaHCIOpTa HpUMEce B CHJIBHO HEYNOPSIO0YCHHBIX
cpenax, oOmamaromux (paKTaJbHBIMH CBOWCTBAMH, C YYeToM cynepaupdy3noHHOTO
NOBEJICHU Ha OOJBIIUX PACCTOSAHUAX U (UIYKTYallMOHHOTO — HAa MajblX PACCTOSHUSAX.
Y CTaHOBIIEHO, YTO MPOCTPAHCTBEHHbIE (UIYKTyallud XapaKTEPUCTUK Cpeibl MPHUBOIAT K
NEePEeHOPMHUPOBKE MOIIHOCTH HCTOYHMKa mpumeceil. Koadduuument nepenopmupoBku, K,
3HAUUTENBbHO YOBbIBa€T C pa3MepoM HcTOuHMKa R npu 3HaueHusx R mesbine
KOPPEJSIIMOHHOM JJTMHBI, OMpenesieMol cBoiicTBaMu cpeabl. B atoit ke obmactu R
koopPumment K, a ¢ HUM u 3(pdeKkTuBHAST MOUIHOCTH, HCIBITHIBAIOT BO3PACTAIOIIHNA
CTaTUCTHUYECKHI pa3dpoc.
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Abstract

An extension of the model for an impurity transport in highly disordered media with fractal properties is
proposed taking into account super-diffusion (at large distances) and fluctuation (at short distances) behavior. It
is determined that spatial fluctuations of medium characteristics lead to renormalization of the power of an

impurity source. Renormalization factor K considerably decreases with source size R if the latter is less than a

correlation length determined by medium properties. In this range of R the factor K as well as an effective
power of the source experience an increasing statistic scattering.
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Impurity particle migration in highly disordered media with fractal properties is used to be analyzed basing
on generalized transport equation which results in anomalous diffusion [1,2]. Such description is of averaged
nature. However, it is obvious that local characteristics of fractal medium are highly fluctuating. The question
arises: how do these fluctuations affect transport processes and how can relevant effects be taken into account?
This paper is to analyze the impact of fluctuations on impurity transport processes depending on an impurity
source size.

A generalized scheme of an averaged description of the impurity transport in statistically homogeneous
media in three-dimension case can be formulated as a continuity equation:
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Herein, the flux density vector éj’z G)(P, t) and the particle concentration C(P, t) depending on coordinates and
time are connected with an integral relation:

ai(P.t)=—[dP £;(P-F)c(P1) 2

The function f; (F) being determined by medium characteristics has the property:
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When this function fi (It') at long distances decreases faster than |ﬂ , Eq. (1) is reduced to the classic
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diffusion equation resulting in that the migration length at a long time interval behaves as r(t) oc t7 “and the

concentration at long distances drops due to Gauss law. If the decrease of the function fi (F) is slower than

-4
|ﬂ , this function, in view of the integral convergence in Eqg. (2), has the following asymptotic:
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Here, d(l"l))~1 if ‘I}{‘ =1 and V and L are medium characteristics having dimension of speed and length

respectively. Substitution of Eq. (4) into Eq. (2) and then into Eq. (1) results in a generalized transport equation
applicable for averaged description of impurity transfer if spatial scale of a variation in concentration exceeds a

correlation length L, i.e. L|VC| << C. In this case, transport processes are of super-diffusion nature with a

migration length varying as r(t) ~ L(Vt/ L)ll(z_a). An alternative statement of this problem consists in the
formalism of fractional derivatives. In this formulation, the impurity transport equation differs from the classic
one by replacement of the spatial second-order derivatives by (2 - a)— order derivatives. It should be stressed

that both formulations deal with averaged description of the processes at m >> L scales.

Consider the problem when the size of an impurity source R is of the order or less than the correlation
length L, and suppose that the time counted from the beginning of source action satisfies the inequality:

t>> (L /V). Let us surround the source by an imaginary surface S; with characteristic radius Rl > L.



The shape of this surface will be choused from the condition that the impurity concentration at the surface is to
be constant for the point source located at the origin of coordinates being the center of the real source. A total

impurity flux Q from the source under consideration to the surface S; can be represent in the form:

Q=Alco—¢) (5)
Here Cy and C; are the meanings of the impurity concentration at the source boundary surface S and at the
surface Sp, respectively; the quantity A is determined by the medium properties in the space between the

surfaces S and S (in the near zone). The flux Q being continuous when crossing the surface S is expressed

through the medium characteristics outside the surface S; (in the far zone) where the generalized transport
equation holds, and we have:

Q=B¢g (6)

Excluding the concentration C; from Eqgs. (5) and (6) we arrive to the relations:

Q=KQy, Q=Bc,, K=A(A+B)"! U]

Under a given concentration at the source surface, the quantity Qq corresponds to the source power derived
neglecting the fluctuations of medium characteristics, and the quantity Q is the effective source power

renormalized by fluctuations, K is a power renormalization factor.

The coefficient B can be calculated by standard method based on Egs. (1), (2) and (4). By the order of
magnitude, it equals:
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At distances m >> L the averaged concentration is expressed through the effective power Q regardless the

source size. In particular, the Eqg. (1) and the relations of Egs. (2) and (4) result in the following expression for a
far tail of the concentration distribution:
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The coefficient A cannot be deduced from the averaged transfer equation since it depends on distribution
details of medium characteristics in the near zone where they are subject to strong fluctuations. This situation
reminds the problem associated with tunnel barrier conductivity having been studied by Raikh and Ruzin [3]. So

we shall use the approach developed in Ref. [3]. In our case, the transfer coefficient A, similarly to conductivity
in Ref. [3], is determined by sparse favorable configurations, named as “punctures” (e.g., fractures in the case of

impurity transport in rock massifs). The contribution F into the transfer coefficient A coming from a specific
puncture is statistically distributed in a broad interval of magnitudes and may be represented by the expression

F =Fyexp (—u) where U is auxiliary variable taking meanings between O and oo. The puncture density
referred to the unit area of the source boundary surface S , as in Ref. [3], can be determined as:

plu)=(So) exp[-Qu)] (10)



where 8(1)/2 is a characteristic cross size of a puncture being negligible in comparison to the average distance

Q. 00
between them, Q(u) is a function with the properties: Q(u)>> 1, a0 <0, — > 0. The ensemble
u ou
average value of the transfer coefficient A takes the form:
Fofy —u
<A>:S—Ojdue u-0fu) (1)
So 9

The integrand in Eq. (11) possesses a sharp peak. Thus, we have up to a pre-exponential factor:

<A>=Sa, a z?exp [— Ugpt —Qopt] (12)
0

where a is a specific value of transfer coefficient which does not depend on source boundary surface area,
Qg :Q(uopt)' The value U =Ugqy corresponding to optimal punctures is determined by the relation:

oQ(u) . » L
8— +1=0. The applicability condition for the result expressed by Eq. (12) consists in that the
u

U=U0pt

average quantity of optimal punctures at the source surface area should be large, Sp(uopt) >>1,or

S > S, S« = Spexp(Qp ) (13)

In the case S < S«, when the average number of optimal punctures is less than unity, the averaged transfer

coefficient is determined by integral from Eq. (11) in which the lower limit has the meaning U =U}

corresponding to the punctures whose averaged number is of the order of unity, S p(Uf )= 1. Thenuptoa
pre-exponential factor we have:

<A>:S*aexp[—(uf—uopt)J S < S« (14)

The quantity U , according to its definition and with account of Egs. (10) and (13), satisfies the equation:
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It should be noted that for large size sources (when S > S« ) the quantity < A > decreases with decreasing

of the surface area S proportionally to S itself, however if we deal with small sizes (when S < S«) it

decreases faster (according to Egs. (14), (15)).
One more effect caused by fluctuations of disordered medium properties is an increase in statistic scattering

of the transfer coefficient A, taking place when the source size decreases. Calculations similar to that ones done
for tunnel barrier conductivity in Ref. [3] lead to the conclusion that the relative scattering

A(A) =< (A— <A >)2>1/2 [ < A> issmall when S > S, it is compared to unity when S < Si; and
may exceed unity in the case S << Sx.

Taking into account the results for transfer coefficient A, the assessment of Eq. (10) and the relations of Eq.
(9) we arrive to the conclusion that the power renormalization factor tends to unity when the source size is large

(K =1 if S>> S&). For small meanings of the source size, the averaged value of the factor K is determined
by the expression;
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The behavior of the averaged renormalization factor M (v) =< K > on the dimensionless source size variable
v defined as

L In(S/S,)
Q
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is shown schematically in Fig. 1.
When the source surface area decreases (S < S«) the statistical scattering of the renormalization factor

(A(K)) grows up similar to the transfer coefficient A. It is obvious that the characteristic surface area Sx

separating two different impurity transfer regimes (S > S« when fluctuations are negligible and S < S« when
fluctuations play a significant role) has

the order of L2,

045 — Thus, spatial fluctuations of medium
characteristics result in significant
reduction of the ensemble average
effective power for the small size
impurity source. In this case the effective
power is subjected to a significant
statistical scattering.
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