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Аннотация 

Теоретически и численно показано на примере фуллеренов C60 и C20 наличие системы 
короткоживущих дискретных объемно-локализованных квантовых уровней электронов в положительно 
заряженных фуллеренах. В отличие от хорошо изученных экспериментально и теоретически 
электронных состояний, локализованных в тонком поверхностном слое, эти электронные состояния 
обусловлены плоской частью кулоновского потенциала положительно заряженной фуллереновой сферы. 
Энергетическая ширина системы таких дискретных объемно локализованных уровней  зависит от заряда 
и увеличивается при его увеличении. Для С60

+1 энергетическая ширина составляет 0,32 а.ед. и 
увеличивается до 1,9 а.ед. у фуллерена C60

+10. Таким образом, электроны, захваченные на этих 
дискретных уровнях фуллерена, образуют своего рода короткоживущий «наноатом» или «наноион», в 
котором электроны локализованы внутри положительно заряженного сферического «ядра». В 
многочисленных опубликованных работах теоретически и экспериментально показано существование 
метастабильных положительно заряженных фуллеренов C60 с зарядом +10 и более, что позволяет 
предположить возможность экспериментального наблюдения рассматриваемой нами системы объемно 
локализованных электронных состояний. 

 
 
 
 
 
 
 
 
 
 
 

Abstract 

Arutyunyan R.V., Osadchy A.V. The systems of volume-localized electron quantum levels 
of charged fullerenes. Preprint №IBRAE 2018-12. Moscow: Nuclear Safety Institute, 2018. 
— 13 p. Bibliogr. 20 refs 

The existence of a system of short-live discrete volume-localized electron quantum levels in positively 
charged fullerenes is theoretically and numerically demonstrated using the example of fullerenes C60 and C20. 
Unlike well-studied experimentally and theoretically electron states localized in a thin surface layer, these 
electron states are due to the flat part of the Coulomb potential of a positively charged fullerene sphere. The 
energy width of the system of such discrete volume-localized levels depends on the charge and increases with 
charge increasing. For C60

+1, the energy width is 0.32 a.u. and increases up to 1.9 a.u. for fullerene C60
+ 10. Thus, 

the electrons captured on these discrete levels of fullerene form a sort of a short-lived "nano-atom" or “nano-
ion”, in which the electrons are localized inside a positively charged spherical “nucleus”. Numerous published 
papers have demonstrated theoretically and experimentally the existence of metastable positively charged C60 
fullerenes with a charge of +10 or more, which suggests the possibility of experimental observation of the 
considering system of volume-localized electronic states. 
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1 Introduction 

Fullerenes are well experimentally and theoretically investigated object. A large number of papers have been 
devoted to the study of the electronic states of neutral fullerenes [1-4]1. Various methods have been used to study 
the stability and the mechanism of the decay of charged fullerenes. A number of experimental studies demonstrate 
the existence of a metastable C60

+n cation with charges up to +10 and more [5-10]. These results were observed in 
the collision of fullerenes with highly charged ions. Also, it was shown in the works that charged C60 molecules are 
most likely to decay by emission of C+2 [5-7] and with a lower probability of C+4 [6,7]. The largest value of the C60 
charge, observed experimentally, is +12 [8]. This result was achieved by irradiating C60 molecules with intense laser 
radiation. 

A theoretical study of the stability limit of fullerene molecules is presented in papers using different approaches 
[5-7, 9]. In the work based on the Dirac-Fock-Slater simulation [9], the limiting charge is +13. The application of 
the molecular dynamics method, together with a simplified approach based on the density functional theory, 
demonstrates the limiting charge from +16 to +19 [10]. Calculations of the lifetime of highly charged (+10 or more) 
fullerenes are in the range of microseconds [11] to seconds [12]. 
In this paper, the existence of a system of short-live discrete volume-localized electron quantum levels in positively 
charged fullerenes is shown theoretically and numerically in the example of fullerenes C60 and C20 on the basis of 
the theoretical approach presented in [13]. 

2 Methods and approaches 

The modeling was carried out using two main approaches. As the first, a numerical solution of the Schrodinger 
equation for a spherically symmetric potential in the nodal approximation was applied. Most calculations were 
carried out using the calculation zone 50 a.u. and the number of nodes is 1000. 

The second approach was based on the density functional theory (DFT) [14], which was implemented in the 
software package QuantumEspresso [15]. The electron wave functions are decomposed in a plane wave basis. To 
reduce the dimension of the plane wave basis, the pseudopotential method was used. In the study of nano-sized 
materials, the supercell method with a translation vector length of 100 au was used to exclude the interaction 
between fullerenes. As the pseudopotential, the Perdew-Wang norm concerving potentials [16] were used in the 
framework of the local density approximation (LDA). The basis takes into account plane waves with energies less 
than 40 Ry. The structure was optimized using a method based on the Broyden-Fletcher-Goldfarb-Shanno 
algorithm. The positions of the ions varied to a state where the interatomic forces became less than 10-4 Ry/au, and 
the parameters of the unit cell varied to values at which the stress in the cell became less than 0.5 Kbar. Calculations 
were carried out on a high-performance cluster computer K-100 of the M.V. Keldysh Mathematics Institute of 
Russian Academy of Sciences. 

3 Results and discussion 

The simplest physical model for describing the potential of a charged fullerene is the widely used approximation 
of the charged sphere field potential: 

 U(r) = –Z UΦ(r), UΦ(r)= �
 1
𝑅𝑅𝑓𝑓

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑟𝑟 ≤ 𝑅𝑅𝑓𝑓
1
𝑟𝑟

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑟𝑟 ≥ 𝑅𝑅𝑓𝑓 
 ,  (1) 

where Z – positive charge, and Rf – fullerene radius. 

1 Note that to our knowledge the first work with theoretical justification for the existence of a stable C60 molecule belongs to 
D.A. Bochvar and E.G. Halpern and was published in 1973 in the Reports of the USSR Academy of Sciences [20]. 
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For convenience, we used a dimensionless system of units, assuming the electron mass m = 1, the electron 
charge e = 1, ћ = 1. In general, our attention will be directed to the study of the fullerene C60, whose radius we take 
Rf = 6.627 a.u. [1]. 

A simple estimate of the discrete energy levels of an electron in such a potential can be obtained from the known 
solutions of the Schrödinger equation for a spherical rectangular well of depth 𝑈𝑈0 = 𝑍𝑍

𝑅𝑅𝑓𝑓
. Within this sphere (0 ≤ r ≤ 

Rf), the solution of the Schrödinger equation is described by a spherical Bessel function 𝜒𝜒 = 𝑗𝑗𝑙𝑙 �
ξ𝑟𝑟
𝑅𝑅𝑓𝑓
�, that satisfies 

the boundary conditions at zero 𝜒𝜒(0) = 0. Then, as outside the well (Rf<r<∞), the solution that satisfies 𝜒𝜒(∞) = 0, 
is represented by the spherical Henkel function 𝜒𝜒 = ℎ𝑙𝑙 �

𝑖𝑖𝑖𝑖𝑖𝑖
𝑅𝑅𝑓𝑓
�. The parameters ξ and η are algebraically related: 

 ξ2 + η2 = 2𝑈𝑈0𝑅𝑅𝑓𝑓2 (2) 

and determine the discrete energy levels: 

 𝐸𝐸𝑛𝑛 = − 𝜂𝜂
2

2𝑅𝑅𝑓𝑓
2 = −𝑈𝑈0 + ξ2

2𝑅𝑅𝑓𝑓
2,   (3) 

The values of the parameters ξ and η are fixed by the condition of continuity of the wave function for r=Rf. For 
l=0 it is means: 

 η= — ξ ctg ξ 

The tables 1 and 2 show the electron levels of the spherical potential well at Z=1 and Z=5, obtained from (3). 
Also in the tables, for comparison, the results of numerical solutions of the Schrödinger equation for a very deep 
well 𝑈𝑈0 ≫

1
2𝑅𝑅𝑓𝑓

2 and a well of finite depth are shown. 

To calculate the energy spectrum of electrons in the potential well (1), we solved the standard Schrödinger 
equation for the radial component of the wave function: 

 
( ) ( )( )

2

2 2

1
2 0,  where

( ) ( )

l ld E U r
dr r

r rR r

+χ
− χ + − χ =

χ =
 (4) 

The calculations has been performed in the nodal approximation with the number of nodes n = 1000.  

Table 1. Energy levels of a rectangular spherically symmetric well for Z = 1. 

l 

Analytical Numeric 
Very deep well Finity depth 

Energy, a.u.  Energy, a.u.  
 

Energy, a.u.  
 

0 -0.039 -0.03951 -0.08491 
1   -0.02238 

Table 2. Energy levels of a rectangular spherically symmetric well for Z = 5. 
l Analytical Numeric 

Very deep well Finity depth 
Energy, a.u. (analytical) Energy, a.u. (numeric) Energy, a.u.  

0 -0.642 -0.64259 -0.66606 
1 -0.525 -0.52419 -0.57418 
2 -0.376 -0.37602 -0.45974 
0 -0.305 -0.30886 -0.40861 
3 -0.199 -0.19842 -0.32414 
1 -0.075 -0.07506 -0.23738 
4   -0.23738 
2   -0.05561 
0   -0.02611 
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Figure 1. Wave function radial component squares for electron states of a rectangular spherically symmetric well of 
finite depth at Z = 5 received as a result of the numerical calculations of the Schrödinger equation (4) 

 
Comparing the results shown in Tables 1 and 2 it can be seen that the discrete energy levels obtained by an 

analytical solution of the Schrödinger equation for an infinitely deep spherically symmetric well and by numerical 
solution in the nodal approximation coincide with good accuracy. Numerical solutions for a well of finite and 
infinite depth coincide for the lowest-lying energy levels and expectly begin to diverge with increasing energy. 
A characteristic feature of the system of discrete levels corresponding to the smooth part of the potential (2) is that 
the electron wave functions corresponding to them are localized in the fullerene volume, in contrast to the well-
studied surface-localized electronic states (Fig. 1). The number of such states increases with increasing depth of the 
potential, which occurs with the growth of the fullerene charge Z (Tables 1 and 2). 
To solve the stationary Schrödinger equation (4) for an electron in the potential well (1), we can use a numerical 
solution for a spherically symmetric potential in the nodal approximation. Figure 2 shows the numerical calculation 
results obtained for the charge Z = 5 for the number of nodes n = 1000 and the calculation region r≤50 a.u. 

 
Figure 2. Energy levels of a spherically symmetric potential (1) at Z = 5 received as a result of the numerical 

calculations of the Schrödinger equation (4)  
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4 Potential of the charged fullerene taking into account the Coulomb field 
and the analytic approximation of the well on the surface in the model of 
the jelly 

For the subsequent consideration of the discrete electronic levels of a charged fullerene, we take into account the 
potential as the sum of the Lorentz potential of the surface layer in the jelly model [17] and the Coulomb potential of 
the positively charged sphere. 

 𝑈𝑈(𝑟𝑟) = − 𝑉𝑉
(𝑟𝑟−𝑅𝑅)2+𝑑𝑑2

− 𝑍𝑍𝑍𝑍Φ(𝑟𝑟), (5) 

where, in accordance with [17] V=0.711, R=6.627, d=0.610 and Z – positive charge of fullerene 
In this case, we neglect the influence of the Coulomb potential (1) on the potential (5). 
The potentials (5) for different Z are shown in Fig. 3. The potential in the center of the fullerene becomes deeper 

as the charge increases. For Z = 1 U (0) = - 0.17 au, whereas in the case of Z = 5 U (0) = - 0.77 au. and U (0) = - 
1.52 a.u. at Z = 10. As a result, we obtain two types of electronic states: localized on a thin sphere of fullerene and 
with a volumetric localization of the electron. 
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Figure 3. Analytical potential of fullerene (5) for various Z. 
 

This is clearly seen in the results of numerical solutions of the Schrödinger equation for an electron in the 
potential (5) for different Z. Figure 4 shows the spectra of a charged fullerene at Z = 1 and Z = 5. Tables 3 and 4 
contain a set of discrete electron states for a charged fullerene at Z = 1 and Z = 5, respectively. For comparison, 
tables 3 and 4 show discrete electronic states for the Coulomb potential of the charged sphere (1) for Z = 1 and Z = 
5, respectively. 

Table 3. Energy levels of a spherically symmetric potential (1) and potential (5) for Z = 1 received as a result 
of the numerical calculations of the Schrödinger equation (4) 

Potential (1) Potential (5) 
n l Energy, a.u. n l Energy, a.u. 

   1 0 -1.05864 
   1 1 -1.01158 
   1 2 -0.94142 
   1 3 -0.84862 
   1 4 -0.73372 
   1 5 -0.59734 
   1 6 -0.44019 
   1 7 -0.26313 
   1 8 -0.18781 
   2 0 -0.14966 

1 0 -0.11313 2 2 -0.10578 
1 1 -0.08074 2 0 -0.07869 
2 0 -0.05527 3 9 -0.06724 
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Potential (1) Potential (5) 
1 2 -0.05132 1 3 -0.06289 
2 1 -0.04079 2 1 -0.05440 
3 0 -0.03175 3 0 -0.03975 
1 3 -0.03104 4 2 -0.03907 
2 2 -0.02903 3 1 -0.02987 
3 1 -0.02427 4 4 -0.02805 
1 4 -0.01974 2 3 -0.02762 

Table 4. Energy levels of a spherically symmetric potential (1) and potential (5) for Z = 5 received as a result 
of the numerical calculations of the Schrödinger equation (4) 

Potential (1) Potential (5) 
n l Energy, a.u. n l Energy, a.u. 
   1 0 -1.66521 
   1 1 -1.64135 
   1 2 -1.59381 
   1 3 -1.52295 
   1 4 -1.42919 
   1 5 -1.31308 
   1 6 -1.17518 
   1 7 -1.01614 
   1 8 -0.83671 
   2 0 -0.75648 
1 0 -0.69530 2 1 -0.69254 
1 1 -0.63561 1 9 -0.63773 
1 2 -0.56490 2 2 -0.61415 
2 0 -0.54226 3 0 -0.55998 
1 3 -0.48600 2 3 -0.53094 
2 1 -0.45972 3 1 -0.48054 
1 4 -0.40322 2 4 -0.44853 
3 0 -0.39317 1 10 -0.42032 
2 2 -0.39088 3 2 -0.40964 
3 1 -0.33771 4 0 -0.39563 

It can be seen from the tables that the numerical values of the energy of the discrete excited levels of the 
Coulomb potential (1) and the values of the levels of the total potential (5) located above the plane part of the 
Coulomb potential are fairly close. 

 
Figure 4. Energy levels of a spherically symmetric potential (5) at Z = 1 (left) and Z = 5 (right) received as a result 

of the numerical calculations of the Schrödinger equation (4) 
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Figure 5. Squares of the wave functions radial component of the spherically symmetric potential (5) states at Z = 5 

received as a result of the numerical calculations of the Schrödinger equation (4) 
Figure 5 shows the results of numerical calculations of the squares of the radial components of the wave 

functions of a spherically symmetric potential (5) at Z = 5. As can be seen from the graphs, along with well-known 
surface-localized levels in the energy spectrum of electrons, there are volume-localized excited levels. 

5 The calculation of energy levels of discrete states of a charged C60 
fullerene on the basis of the electron density functional 

To compare the results obtained, numerical calculations of the potentials of charged fullerenes were carried out 
using a method based on the electron density functional theory. Numerical three-dimensional potentials for the 
electron in a charged fullerene are obtained. In contrast to potential (5), these dependencies take into account the 
positions of each carbon atom, which leads to a violation of the spherical symmetry. It is necessary to distinguish 
two characteristic cross sections of the potentials obtained: passing through the center of the fullerene and through 
the carbon atom, and passing through the middle of the segment connecting neighboring atoms. Figure 6 contains 
the analytical potentials for the C60 fullerene at Z=3 and Z=5, as well as the cross sections calculated numerically by 
the DFT potential, passing through the carbon atom and through the center of a segment between neighboring 
atoms. 
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Figure 6. Comparison of the analytical potential of the charged fullerene (5) at Z = 3 (on the left) and Z = 5 (on the 
right) with cross sections of the calculated potential at Z = 3 and Z = 5, passing through the atom of carbon (atom) 

and through the center of the segment connecting the neighboring atoms (middle). 

It can be seen that the maximum depth of the potential well obtained using DFT, similar to the potential (5), 
decreases with increasing Z. The value of the potential in the center of the fullerene is smaller than the analytical 
approximation (5) that we have used. The potential well located on the radius of the fullerene is much deeper and 
wider. The reason for this difference is the relatively rough approximation within the jelly model, whereas the DFT 
makes it possible to more accurately calculate the potential, taking into account the positions of all fullerene atoms. 
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We consider the solution of the Schrödinger equation in a centrally symmetric field, where potentials calculated 
using the DFT method was used as the field potential. The cross sections for the potentials under consideration were 
taken through the carbon atoms and passing through center of a segment between the neighboring atoms. Despite the 
fact that the real field of fullerenes is not centrally symmetric, this approach may be justified because we are most 
interested in states with energies above the potential well in the center of the charged fullerene. These states are the 
least subject to the lack of symmetry. 

Figure 7 shows the examples of the obtained electronic states for C60 fullerene with charges +1, +5 and +10. 

 
Figure 7. Energy levels in spherical symmetric potential received as a result of the numerical calculations of the 

Schrödinger equation (4) using the DFT method for the C60 fullerene with charge +1 (top left), +5 (top right) and 
+10 (bottom)  

 
Figure 8. Squares of the radial component of the wave functions of states of a spherically symmetric potential 

received as a result of the numerical calculations of the Schrödinger equation (4) using the DFT method for C60 
fullerene at Z = 5 

 
The figure 8 presents the results of numerical calculations of the squares of the radial components of the wave 

functions of a spherically symmetric potential calculated for a C60 fullerene with a charge of +5. Analogously to the 
case of the analytical potential (5), it can be seen from the graphs that along with the well-known surface-localized 
levels in the energy spectrum of the electrons, there are volume-localized excited levels. 

As can be seen from figures 7 and 8, the energy spectra of the electrons and wave functions calculated using the 
potential obtained by the method based on the electron density theory are close to the results obtained in solving the 
Schrödinger equation for analytical potentials (5). The principal difference between the results obtained for the 
potential (5) and the calculated one using DFT, is observed for states located below the potential in the center of the 
fullerene. These states are localized within the thin sphere of the fullerene surface. Due to the fact that DFT takes 
into account the positions of all fullerene atoms in an explicit form, the potential are not spherically symmetric, as in 
the case with the potential (5). At the same time, states with energies greater than the potential at the center of the 
fullerene are localized in the fullerene volume, and the calculated potential for the DFT is practically spherically 
symmetric, analogous to (5). This is clearly seen in figure 8, which represents the calculated squares of the wave 
functions obtained as a result of the solution of the Schrödinger equation for states located at the level of the 
boundaries of occupied and free states at the bottom of the potential well at the center of the fullerene and above the 
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bottom of the potential well. Data for fullerene C60 with charge +10 are presented. Fullerene with other charges 
demonstrates similar results. 

6 Discrete energy levels of charged C20 fullerene 

Similar results can be obtained for other types of fullerenes, including those for C20. According to [18], the 
radius of a given fullerene can be taken equal to R = 2.93 a.u. The electron states obtained by numerically solving 
the Schrödinger equation for a spherically symmetric potential (1), applied to C20, are shown in figure 9, the values 
of 10 states with the lowest energy are shown in table 5. 

 
Figure 9. Energy levels of a spherically symmetric potential (1) received as a result of the numerical calculations of 

the Schrödinger equation (4) for C20 fullerene at Z = 1 (top left), Z = 5 (top right) and Z = 8 (bottom). 

Table 5. Energy levels of a spherically symmetric potential (1) at Z = 1, 5 and 8 received as a result of the 
numerical calculations of the Schrödinger equation (4) 

Z=1 Z=5 Z=8 
n l Energy, a.u. n l Energy, a.u. n l Energy, a.u. 
1 0 -0.2042 1 0 -1.4612 1 0 -2.4539 
1 1 -0.1104 1 1 -1.2205 1 1 -2.1725 
2 0 -0.0776 1 2 -0.9592 1 2 -1.8511 
1 2 -0.0552 2 0 -0.9271 2 0 -1.7761 
2 1 -0.0506 2 1 -0.7247 1 3 -1.5060 
3 0 -0.0401 1 3 -0.7038 2 1 -1.4462 
1 3 -0.0311 3 0 -0.6009 3 0 -1.2280 
2 2 -0.0310 2 2 -0.5781 2 2 -1.1997 
3 1 -0.0290 1 4 -0.4919 1 4 -1.1673 
4 0 -0.0238 3 1 -0.4780 3 1 -1.0172 

Calculation by a method based on the theory of the electron density functional theory makes it possible to obtain 
potentials similar to the case of a charged C60 fullerene. The electron states in the spherical symmetric potential 
calculated by the DFT method for C20 fullerene with charge Z = 5 and Z = 8 are shown in figure 8. It is worth noting 
that the radius of C20 increases with increasing of charge. Thus, according to [18], the radius of neutral fullerene is 
2.93 a.u., at the same time, according to calculations using DFT, shown in Fig. 10, with charge Z = 5 it increases to 
3.8 a.u., and at Z = 8 up to 4.14 a.u. Figure 11 presents the results of numerical calculations of the squares of the 
radial components of the wave functions of a spherically symmetric potential calculated for a C20 fullerene with a 
charge of +5. At the same time, we do not consider the question of the stability and lifetime of such positively 
charged fullerenes. 
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Figure 10. Energy levels in spherically symmetric potential received as a result of the numerical calculations of the 
Schrödinger equation (4) using the DFT method for C20 fullerene with a charge of +5 (on the left) and +8 (on the 

right) 
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Figure 11. Squares of the radial component of the wave functions of the states of a spherically symmetric potential 
received as a result of the numerical calculations of the Schrödinger equation (4) using the DFT method for C20 

fullerene at Z = 5. 

Thus, similarly to C60 fullerene, the calculations given for the analytical potential (1) applied to C20, as well as 
numerical solutions of the Schrödinger equation for spherically symmetric potentials of charged C20 fullerenes 
obtained by the DFT method, along with well-studied electron states localized within the thin sphere fullerene, there 
are states localized in the volume. 

7 Conclusion 

In this paper, we demonstrated on the basis of theoretical and numerical calculations, using the example of 
fullerenes C60 and C20, the existence of a system of short-lived discrete volume-localized quantum levels of 
electrons in positively charged fullerenes.  
The results obtained provide a consistent qualitative picture for charged fullerenes. To clarify our very approximate 
results, of course, further research is needed on the basis of microscopic calculations, as well as experimental 
measurements. 

To estimate the lifetime of such levels, one can use the well-known formula for the photon emission rate: 

 
3 2

3
0

,
3ij ijP d

c
ω

=
πε 

  

where ω – the emission frequency, and 𝑑𝑑𝑖𝑖𝑖𝑖 is the matrix element of dipole transition from initial (j) to final (i) state.  
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One can estimate the magnitude of 𝑑𝑑𝑖𝑖𝑖𝑖 for transitions between volume-localized levels of charged fullerenes as 
eR. A simple numerical estimate, taking R=6.627 a.u. for fullerene C60 leads to: 

( ) 32

2

4 6.627 Δ
3α λij

e

c EP
m C

 
=  

 
 

Thus, it is possible to obtain for various Δ𝐸𝐸: 𝑃𝑃𝑖𝑖𝑖𝑖(Δ𝐸𝐸 = 1 𝑒𝑒𝑒𝑒) = 4.67 ∙ 107 𝑠𝑠−1, 𝑃𝑃𝑖𝑖𝑖𝑖(Δ𝐸𝐸 = 10 𝑒𝑒𝑒𝑒) = 4.67 ∙
1010 𝑠𝑠−1. This gives an estimate of the lifetime of states in the range from 21 ns to 21 ps, which is much smaller 
than the estimated lifetimes of charged fullerenes and suggests the possibility of experimental confirmation of the 
existence of volume-localized discrete levels. 

Experimental confirmation of the existence of these volume-localized discrete levels would be of great interest 
for experimental research and practical tasks, including the development of new sources of coherent radiation in a 
wide range of wavelengths. 

To estimate the inverse population value nij, which is necessary to reach the threshold for generation of coherent 
radiation at volume-localized levels of fullerenes, we use the following simple expression: 

 𝜇𝜇𝜔𝜔𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 ≫ 1, 

where 

𝜇𝜇𝜔𝜔 =
𝜆𝜆2

2𝜋𝜋
𝑛𝑛𝑖𝑖𝑖𝑖

Δ𝜔𝜔
Δ𝜔𝜔𝑠𝑠𝑠𝑠

 

𝜇𝜇𝜔𝜔 is the resonance amplification factor per unit length; 
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 is the photon loss length; 
Δ𝜔𝜔 is full broadening of the emission line due to the Doppler effect, collisional broadening and 
broadening due to nonradiative losses; 
Δωsp is the width of dipole spontaneous emission line; 
𝜆𝜆 transition wavelength between i and j levels; and 
ω is the emission frequency at the transition i-j. 

𝑛𝑛𝑖𝑖𝑖𝑖 ≫
2𝜋𝜋

𝜆𝜆2𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎
Δ𝜔𝜔𝑠𝑠𝑠𝑠
Δ𝜔𝜔

 

Δ𝜔𝜔 ≈  ∆𝜔𝜔𝑑𝑑𝑑𝑑𝑑𝑑 + ∆𝜔𝜔𝑐𝑐𝑐𝑐𝑐𝑐 + ∆𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

The value 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 ~ 1
𝑛𝑛𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎

, where n is the volume density of fullerenes. According to experimentally measured 
values in fullerene pairs of С60 [19] 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎~10−15 𝑐𝑐𝑐𝑐2 in the wavelength range of 200-400 nm. 

To reach the generation threshold of coherent radiation in the optical range, the estimate of the volume density of 
the inverted population nij at the fullerene density n=1014-1015 cm-3 gives the value of 1012 - 1013 cm-3. 
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