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Аннотация 

В рамках простой физической модели исследуются электронные свойства заряженных фуллеренов и 
луковичных структур. Показано существование системы дискретных короткоживущих квантовых 
уровней для электронов в модельной сферической кулоновской потенциальной яме. В случае 
положительно заряженных фуллеренов энергия объемно-локализованных электронных уровней 
находится в диапазоне от 1 эВ до 100 эВ. 

Электроны, захваченные на указанные дискретные локализованные в объеме уровни, создают 
своеобразный наноатом, в котором электроны или μ - мезоны локализуются внутри заряженной полой 
сферы фуллерена, играющего роль ядра в атоме.  

В случае отрицательно заряженных однослойных или луковичных фуллеренов кулоновское поле 
создает сферическую потенциальную яму для положительно заряженных частиц (протонов, ядер 
дейтерия, трития). При этом возникает система дискретных уровней для положительно заряженных 
частиц, в которой протоны играют роль электронов, а отрицательная заряженная оболочка фуллерена - 
роль ядра. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Arutyunyan R.V. Theoretical investigation of electronic properties of highly charged 
fullerenes. Systems of discrete short-lived volume-localized levels, — (Preprint / Nuclear 
Safety Institute RAS IBRAE 2018-08). — Moscow, 2018 — 12 p. — Bibliogr. 44 items 

We study the electronic properties of charged fullerenes and onion-like structures in the framework of a sim-
ple physical model and show the existence of a system of discrete short-lifetime quantum levels for electrons in 
the model well potential. In the case of positively charged fullerenes, we find that the energy of the volume-
localized levels ranges from 1 eV to 100 eV.  

Electrons captured by these discrete levels localized in the volume generate a specific nano-atom wherein 
electrons or μ - mesons are localized inside a charged hollow sphere of fullerene playing the role of a nucleus in 
an atom. 

In case of negatively charged single-layered or onion-like structure fullerenes, Coulomb field creates a 
spherical potential well for positively charged particles (protons, nuclei of deuterium, tritium). In such a case, a 
system of discrete levels for positively charged particles is created wherein protons act as electrons and nega-
tively charged sphere of fullerene plays the role of a nucleus. 



Theoretical investigation of electronic properties of highly charged 
fullerenes. Systems of discrete short-lived volume-localized levels 

Rafael V. Arutyunyan 

ИНСТИТУТ ПРОБЛЕМ БЕЗОПАСНОГО РАЗВИТИЯ АТОМНОЙ ЭНЕРГЕТИКИ 
113191, Москва, ул. Б. Тульская, 52 

тел.: (495) 955-22-09, эл. почта: arut@ibrae.ac.ru 

1 Introduction 

Fullerenes represent one of allotropes of carbon, along with graphite, diamond, amorphous carbon, nanotubes 

and graphene. Following the earlier theoretical predictions, the first fullerene  molecule was experimentally 

discovered in the 1980-ies [1, 2] as a nanometer-size hollow spherical structure of 60 carbon atoms located at the 
vertices of a truncated icosahedron. Subsequently, the production of fullerenes in large quantities was developed and 

the fullerene nanotubes and many other fullerenes were discovered, such as ,  and even lager structures. 

This gave a start to an explosive growth of research in the area of nanoscience, the historic development and the 
current status of which can be found in the numerous reviews [3–7]. 
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During the recent time, the properties of charged fullerenes have been actively experimentally and theoretically 
investigated [8–22]. A considerable number of works are devoted to the study of their stability (lifetime), 
mechanisms for their charging and decay [23]. 

The present paper is devoted to the discussion of the structure of the electronic spectrum of the charged 
fullerenes. Simple models are used to show the existence of the volume-localized discrete quantum levels for the 
usual fullerene and for the onion-like structures. Here we confine our analysis to the case of the positively charged 

fullerenes, with a particular attention to the properties of the  molecule. 60C

Basic notations are as follows:  and e  are electron's mass and the absolute value of electron charge, em
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 is the fine structure constant. 

2 Charged fullerene: preliminaries 

One can multiply ionize  with the help of the highly charged ions, fast electrons, or photons [7]. An 

interesting issue is actually how high is the value of an electric charge that a fullerene can carry? Experimentally, 
charged fullerenes in the range of 

60C

= 0, ,9Z e , [13], and even up to = 10Z e  [11], were produced in collisions 

of a beam of  with a beam of highly ionized Xe atoms; such charged fullerenes are stable on a time scale of 

several 
60C

μ s. The highest value = 12Z e  was observed for a charged fullerene (with the lifetime of of order of a 

μ s) ionized by intense short infrared laser pulses [12]. The theoretic analysis of the Coulomb stability of highly 

charged fullerenes [14, 15] predicted the limiting value = 18Z e  on the basis of a conducting sphere model, 

whereas the existence of = 14Z e  was established theoretically [16–19] by means of the density functional theory. 
However, the predicted lifetime falls drastically — by ten orders— when Z  increases from 11 to 14. 

Let us formulate the corresponding quantum-mechanical spectral problem. With an account of the spherical 

symmetry of a fullerene, we use the standard ansatz for the wave function ( , , ) = ( ) ( , )ψ ϑ ϕ ϑ ϕlmr R r Y , with the 

spherical harmonics , and recast the spherically symmetric Schrödinger equation [24] into a second order 

differential equation  
lmY
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emd l l
E U r
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0.  (1) 

Here the function ( ) = ( )χ r rR r ,  is subject to the boundary conditions  0 <≤ r ∞

 (0) = 0, ( ) = 0.χ χ ∞  (2) 

The form of solution is determined by the potential . ( )U r

We will discuss the energy levels of an electron by starting from a simple model potential, and then move on to 
more complicate form of U . 

2.1 Warm-up model: deep spherical well 

A first very approximate estimate of the energy levels can be obtained by describing a charged fullerene by the 

model potential of a spherical rectangular well of the depth 0
0

=
4πε f

Ze
U

R
 (where Z  is the value of the charge, 

and fR  is fullerene's radius):  
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f

U r R

U r r R  (3) 

Inside such a well ( 0 ≤ ≤ fr R

=χ ξ

), a non-normalized solution of the Schrödinger equation (1) is described by the 

spherical Bessel function ( /l )fj r R  which satisfies the boundary condition at zero (0) = 0χ , whereas 

outside the well ( ) a solution that satisfies < < ∞R rf ( ) = 0χ ∞  is given by the spherical Hankel function 

. The two parameters  and (=χ ηlh i r R )/ f η ξ  are algebraically related,  

 

2
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and they determine discrete energy levels via  

 
2 2 2 2

02
= =

2 2 2
.
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e f e f

E U
m R m R

 (5) 

The values of parameters η  and ξ  are fixed by the continuity condition of the wave function at = fr R . For 

, this yields  = 0l

 = cot .η −ξ ξ  (6) 

It is worthwhile to notice that the right-hand side of (4) is essentially greater than 1 for highly charged fullerenes. 

For example, for  we have 10+
60C

2
0

2

2
= 132.5


e fm U R

. Consequently, for highly charged fullerenes 10Z e  one 

can use an approximation of a very deep well 
2

0 2
e2 f

U
m R

  deriving the energy levels from a condition of the 

vanishing of the wave function at the boundary: . ( ) = 0ξlj
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2.2 Shell model: spherical well with Coulomb tail 

The simplest model above obviously provides a very rough approximation. A better understanding is achieved 
by describing a charged fullerene with the model potential of a sphere with a constant surface charge density:  

 
0

1
, ,

( ) = ( ), =
14

, >

 ≤

− Φ Φ ×πε 




r R
R

e
U r Z r

r R
r

.

 (7) 

This potential differs from (3) by the charecteristic Coulomb tail outside of the fullerene. As before, here 

=Z Ne  is a positive charge, and = fR R  is the fullerene radius. Our attention will be mainly confined to the  

fullerene, when 

60C

0= 6.627fR a . 

The characteristic feature of the corresponding wave functions is that they obviously describe the volume-
localized states which are basically confined to the central part of the potential, i.e., to the inner region of the 

fullerene ≤ fr R . The number of such states increases for the potential well becoming deeper, which happens when 

the charge Z  of the fullerene grows. 

For a highly charged fullerene with = 10Z e , the corresponding spectrum and the wave functions are presented 
in Fig. 1 and Fig. 2, respectively. 

Figure 1: Spectrum for charged fullerene potential (7) with = 10Z e . 

3 Model potential for a charged fullerene 

The model above provides a rather simplified description in the sense that it does not take into account the actual 
physical structure of a fullerene. A more realistic potential  can be constructed in the framework of the jellium 

model [25, 26, 27, 28] as a sum of the positive contribution of the carbon atom's nuclei located on the spherical 

surface of the fullerene radius 

( )U r

fR  and the negative contribution of the electron clouds. The resulting potential is 

attractive and it has a cusp-shape form with the clear localization in the thin spherical shell. For , the 

corresponding Lorentz-bubble potential reads  
60C
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Figure 2: Wave functions for the model potential (7) with = 10Z e . 

 

2

2 2
( ) = ,

( )
−

− +


e

V
m

U r
r R d

 (8) 

where the parameter V  determines the depth,  the width, and d R  the position. In the self-consistent spherical 
jellium model based on the Kohn-Sham equations, these parameters are fixed [28] to the values  

  (9) 0= 0.711, = 6.627 , = 0.610 .V R a d 0a

In contrast to the volume-localized feature of the wave functions for the model (7), the states for the potential (8) 
mostly have a typical surface-localized behavior. At the center of a fullerene, the value 

au = 0 eV is only slightly below zero, and hence only few discrete levels with the negative 

energy higher than that value correspond to the volume-localized states. 

(0) = 0.016−U .44−

Coming to the case of a charged fullerene, let us now modify the Lorentz-bubble potential (8) by including the 
contribution of the charged spherical surface (7). The generalization of the potential (8) for a charged fullerene 
model then reads  

 

2

2 2
( ) = ( ),

( )
− −

− +


e

V
m

U r Z r
r R d

Φ  (10) 

where Z  is the charge of the fullerene. 

With such a modification, the central part of the potential deepens, so that au eV for (0) = 1.52−U = 41.5−
= 10Z e . As a result, there are two types of wave functions for the modified potential (10): the lower-energy states 

are distinctly surface-localized, whereas the higher energy levels correspond to the volume-localized quantum states. 

One can find the discrete quantum energy levels of an electron in the potential (10) by integrating the 
Schrödinger equation (1) numerically. The corresponding results for the charge = 10Z e  are presented in Table 1 
and Figs. 3-5. 

Table 1: Electron energy levels for charged fullerene potential (10) with = 10Z e .  

[Notation:  — level number, l  — angular quantum number, i  — radial quantum number]. n
   n  l    i    E  (au)     n  l    i    E  (au)  
 1   0   1   -2.39903  7   6   1   -1.90343 
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2   1   1   -2.37490  8   7   1   -1.74240 
3   2   1   -2.32685  9   8   1   -1.56053 
4   3   1   -2.25520  10   0   2   -1.49334 
5   4   1   -2.16040  11   1   2   -1.41574 
6   5   1   -2.04296  12   9   1   -1.35854 

Figure 3: Spectrum for charged fullerene potential (10) with = 10Z e . 

Figure 4: Surface-localized wave functions for charged fullerene potential (10) with = 10Z e . 
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Figure 5: Volume-localized wave functions for charged fullerene potential (10) with = 10Z e . 
  

4 Onion-like fullerene 

Onion (or onion-like) structures represent a highly interesting class of carbon systems which are obtained when 
fullerenes are concentrically enclosed one into another to form a double-, triple-, or in general a multi-layered 

object. Each (quasi-)spherical layer is a fullerene ( , , , ,  ), with the separation between shells 

equal to nm which is slightly larger than the distance between the planar layers in graphite crystals. The 

outer diameter of a typical 5-15 layered onion ranges between 4 to 10 nm, with the radius of the innermost layer 

equal to 

60C 240C 540C 960C

0.335

fR , however smaller and much larger onion-like structures are also observed. Following the first 

observation [29] of spherical multi-layered structures, the concept of ``carbon onion'' was coined in 1992 when the 
formation of the onion-like spherical particles was demonstrated by heating of nanotubes with an electron beam 
[30–32]. Since then the physical and chemical characteristics of carbon onions was analyzed in numerous theoretical 
and experimental studies; see the reviews [33–41] for the further information on the production, geometrical, 
physical and chemical properties, and applications of onion-like carbon structures. 

In the context of the current investigation of the energy spectrum of charged carbon complexes, the onion-like 
structures are qualitatively different from the usual fullerenes in the sense that, in contrast to the latter case when the 
electric charge is smeared only over the surface of fullerene's hollow sphere, in the former case the electric charge is 
distributed in the volume of an onion sphere on its many internal layers. 

Accordingly, in a simplest model for the study of discrete volume levels of electrons in multi-layer onion-like 
charged fullerenes (somewhat similarly to the simplest model (5) and (6) of a rectangular spherical well for a 
fullerene), one can look for analytic estimates by assuming a homogeneous density when the charges of consecutive 
layers of the onion structure are proportional to the cube of the layer radius. In this case, the potential energy of an 
electron in an electrostatic field is as follows:  

 

2

2

0

1
3 ,

2

( ) =
4 1

, >

  
− ≤  
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
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



r
r R

R R

Ze
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r R
r
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 (11) 
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Here Z  is the total positive charge of an onion structure, and on=R R  is its outer radius. As a first step to 

understand the spectrum structure, we approximate the potential by extending the piece inside the sphere  to 
all values of the radius:  

≤r R

 2 2
0

1
( ) = ,

2
− + ωeU r U m r  (12) 

where we denoted  

 0 3
0 on 0 on

3
= , =

2 4 4 e

Ze Ze
U .

R m R
ω

πε πε
 (13) 

The maximum specific charge tot/Z N  of onion-like structures (where  is the total number of atoms) 

before their decay would be smaller than that for , but the absolute value of the charge can be much larger. 

Accordingly, the depth of the potential well  of an electron in the field of a positively charged onion structure 

then can reach the values of order of 100 eV, thereby increasing the significance of the volume-localized quantum 
states. 

totN

60C

0U

For the approximate potential (11), one can evaluate the energy spectrum analytically by making use of the well-
known solution of the Schrödinger equation for the spherical oscillator [24]. For energy levels we find  

  (14) (0= 2+ ω + −E E i l )2 ,

 
2

0 2
0 o o 0 o

3
=

2 4 4

 
−πε πε 



n e n n

Ze Ze
E

R m R R
,  (15) 

whereas the wave functions of the corresponding stationary states are  

 
2

2
1 1

3
= const exp ( , ) (1 , , ),

2 2

 λψ − θ ϕ − + 
 

l
nlm lm

r
r Y F i l λr  (16) 

where  is the degenerate hypergeometric function,  1 1F

 
2 3

0 o

= =
4

ωλ
πε 

e

n

m Zem
,e

R
 (17) 

the radial quantum number , the angular quantum number , and . = 1,2,i = 0,1,2,l = 0, 1, ,± ±m l

As a particular application, let us consider a model of a 5-layer charged onion fullerene with = 225Z e  and the 

size on = 5 fR R . The total charge arises from the assumption of a homogeneous distribution of the electric charge 

on the inner layers proportionally to the third power radius of the layer. The corresponding energy levels (14) for 
such onion model are presented in Table 2. The well-known degeneracy properties of an oscillator spectrum are 
manifest. 

Table 2: Electron energy levels (14) for an onion-like fullerene potential (11) with  and = 225Z

o = 33.135n 0R a . [Notation: n  — level number, l  — angular quantum number, i  — radial quantum 

number]. 

 n      l  i    E  (au)     n    l    i  E  (au)  
 1   0   1   -10.0676  11   3   2   -9.67442 
2   1   1   -9.98900  12   1   3   -9.67442 
3   2   1   -9.91035  13   6   1   -9.59578 
4   0   2   9.91035  14   4   2   -9.59578 
5   3   1   -9.83171  15   2   3   -9.59578 
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 n    l    i     (au)   n    l    i    E E  (au)  
6   1   2    -9.83171  16   0   4   9.59578 
7   4   1   -9.75307  17   7   1   -9.51714 
8   2   2   -9.75307  18   5   2   -9.51714 
9   0   3   -9.75307  19   3   3   -9.51714 
10   5   1  -9.67442  20   1   4   -9.51714  

To complete the discussion of the onion-like structures, it is important to analyze the possible values of Z  for 
onion fullerenes. The corresponding experimental and theoretical results on the limiting values of the positive 
electric charge for ionized onion-like fullerenes are absent. Nevertheless, one can make some simple estimates for 
the highest value of the charge by evaluating the critical value of the field strength on the outer spherical layer of an 
onion fullerene. 

In order to do this, we start with the case of an ordinary fullerene and notice that, for a positive charge Z  on it, 

the value of the electric field strength reads 
2

0

=
4πε f

Z

R
 , evaluated at the spherical surface of a fullerene, before 

it becomes unstable due to the field ion emission. Taking 0= 6.627fR a  and = 12Z e  in the fullerene , we 

find for the field strength V/m. This is smaller than the critical value (evaporation field) for the 

carbon V/m, above which the ion field emission starts [42, 43]. One can reasonably assume that 

this field value should not be exceeded also for the onion-like structures. 

60C
11= 1.38 10×

11
m = 1.48 10×ax

We thus can formulate a simple criterion  for the stability of a charged multi-layer onion fullerene, 

with the help of which one can derive a rough estimate of the corresponding maximal possible total positive charge 
max d

=Z Ne . In particular, applying this scheme to the 5-layer onion structure with o = 5n fR R  and 

, we find V/m which is well below the threshold value. In a similar way, one 

can evaluate the limiting charge for onion-like structures with an arbitrary number of layers. 

= i
N N = 225i

11= 1.08 10×

Obviously, such a semi-empirical estimate is very approximate and needs to be further refined on the basis of the 
microscopic calculations or the experimental measurements. 

5 Conclusions 

In the framework of a simple physical model, we demonstrate the existence of a system of discrete short-lifetime 
quantum levels for electrons in the potential well of the self-consistent Coulomb field of charged fullerenes and 
onion-like structures. For electrons, in the case of positively charged fullerenes and onion-like structures, the energy 
of the volume-localized levels ranges from 1 eV to 100 eV. 

The results obtained provide a consistent qualitative picture both for the charged fullerenes and for the onion-like 
structures. In order to refine our very approximate findings, one certainly needs a further investigation on the basis 
of the microscopic calculations, as well as the experimental measurements. 

An experimental confirmation of the existence of the volume-localized discrete levels would be of great interest 
for the experimental research and practical problems including a development of the new sources of coherent 
radiation in a wide range of wavelengths. 

To estimate the inverted population density nij necessary to achieve the coherent emission generation threshold 
on volume-localized levels of fullerenes, we use the following simple expression: 

 abs 1Lωμ    (18) 

where: 

 
2

sp2 ijnω
λ Δωμ =
π Δω

  (19) 

μω is the resonance amplification factor per unit length; 

Labs is the photon loss length; 
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Δω is full broadening of the emission line due to the Doppler effect, collisional broadening and broadening due to 
nonradiative losses; 

Δωsp is the width of dipole spontaneous emission line; and 

ω is the emission frequency at the transition i-j. 

 

sp

2
abs

Dop col nrl

2
ijn

L

Δωπ
λ Δω

Δω ≈ Δω + Δω + Δω


  (20) 

The value absL
n


abs

1

σ
 , where n is the volume density of fullerenes. According to experimentally measured 

values in fullerene pairs of С60 [ 44 ]  in the wavelength range 0f 200–400 nm. 15 2
abs 10 cm−σ 

An estimate for the volume density of the inverted population nij at the fullerene density n=1014–1017 cm–3 gives 
the value of 1014–1016 cm–3. 

I thank P. N. Vabishchevich for performing numeric computations, and P. S. Kondratenko, Yu. N. Obukhov and 
participants of the seminar of the Theoretical Physics Laboratory, Nuclear Safety Institute (IBRAE) for the fruitful 
and stimulating discussions. 
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